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Polynomial and Rational Functions

Figure 1 35-mm film, once the standard for capturing photographic images, has been made largely obsolete by digital photography. 

(credit “film”: modification of work by Horia Varlan; credit “memory cards”: modification of work by Paul Hudson)
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Introduction

Digital photography has dramatically changed the nature of photography. No longer is an image etched in the emulsion 

on a roll of �lm. Instead, nearly every aspect of recording and manipulating images is now governed by mathematics. 

An image becomes a series of numbers, representing the characteristics of light striking an image sensor. When we 

open an image �le, so�ware on a camera or computer interprets the numbers and converts them to a visual image. 

Photo editing so�ware uses complex polynomials to transform images, allowing us to manipulate the image in order 

to crop details, change the color palette, and add special e�ects. Inverse functions make it possible to convert from one 

�le format to another. In this chapter, we will learn about these concepts and discover how mathematics can be used 

in such applications.
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LEARNING OBJECTIVES

In this section, you will:

•  Recognize characteristics of graphs of polynomial functions.

•  Use factoring to find zeros of polynomial functions.

•  Identify zeros and their multiplicities.

•  Determine end behavior.

•  Understand the relationship between degree and turning points.

•  Graph polynomial functions.

•  Use the Intermediate Value Theorem.

5.3 GRAPHS OF POLYNOMIAL FUNCTIONS

�e revenue in millions of dollars for a �ctional cable company from 2006 through 2013 is shown in Table 1.

Year 2006 2007 2008 2009 2010 2011 2012 2013

Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

Table 1

�e revenue can be modeled by the polynomial function

R(t) = −0.037t4 + 1.414t3 − 19.777t2 + 118.696t − 205.332

where R represents the revenue in millions of dollars and t represents the year, with t = 6 corresponding to 2006. 

Over which intervals is the revenue for the company increasing? Over which intervals is the revenue for the company 

decreasing? �ese questions, along with many others, can be answered by examining the graph of the polynomial 

function. We have already explored the local behavior of quadratics, a special case of polynomials. In this section we 

will explore the local behavior of polynomials in general.

Recognizing Characteristics of Graphs of Polynomial Functions

Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that these types of graphs 

are called smooth curves. Polynomial functions also display graphs that have no breaks. Curves with no breaks are 

called continuous. Figure 1 shows a graph that represents a polynomial function and a graph that represents a function 

that is not a polynomial.
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Example 1 Recognizing Polynomial Functions

Which of the graphs in Figure 2 represents a polynomial function?
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Solution �e graphs of f and h are graphs of polynomial functions. �ey are smooth and continuous.

�e graphs of g and k are graphs of functions that are not polynomials. �e graph of function g has a sharp corner. 

�e graph of function k is not continuous.

Q & A…
Do all polynomial functions have as their domain all real numbers?

Yes. Any real number is a valid input for a polynomial function.

Using Factoring to Find Zeros of Polynomial Functions

Recall that if f is a polynomial function, the values of x for which f (x) = 0 are called zeros of f. If the equation of the 

polynomial function can be factored, we can set each factor equal to zero and solve for the zeros.

We can use this method to �nd x-intercepts because at the x-intercepts we �nd the input values when the output 

value is zero. For general polynomials, this can be a challenging prospect. While quadratics can be solved using the 

relatively simple quadratic formula, the corresponding formulas for cubic and fourth-degree polynomials are not 

simple enough to remember, and formulas do not exist for general higher-degree polynomials. Consequently, we will 

limit ourselves to three cases:

1. �e polynomial can be factored using known methods: greatest common factor and trinomial factoring.

2. �e polynomial is given in factored form.

3. Technology is used to determine the intercepts.

How To…
Given a polynomial function f, �nd the x-intercepts by factoring.

1. Set f (x) = 0.

2. If the polynomial function is not given in factored form:

a. Factor out any common monomial factors.

b. Factor any factorable binomials or trinomials.

3. Set each factor equal to zero and solve to �nd the x-intercepts.
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Example 2 Finding the x-Intercepts of a Polynomial Function by Factoring

Find the x-intercepts of f (x) = x 6 − 3x  4 + 2x2.

Solution We can attempt to factor this polynomial to �nd solutions for f (x) = 0.

 x 6 − 3x 4 + 2x 2 = 0 Factor out the greatest common factor.

 x 2(x 4 − 3x2 + 2) = 0 Factor the trinomial.

 x 2(x 2 − 1)(x 2 − 2) = 0 Set each factor equal to zero.

 (x 2 − 1) = 0 (x 2 − 2) = 0

x 2 = 0 or x 2 = 1 or x 2 = 2

 x = 0  x = ± 1    x = ± √
—

 2  

�is gives us �ve x-intercepts: (0, 0), (1, 0), (−1, 0),  (  √
—

 2  , 0 ) , and  ( − √
—

 2  , 0 ) . See Figure 3. We can see that this is an 

even function because it is symmetric about the y-axis.
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Figure 3

Example 3 Finding the x-Intercepts of a Polynomial Function by Factoring

Find the x-intercepts of f (x) = x 3 − 5x 2 − x + 5.

Solution Find solutions for f (x) = 0 by factoring.

 x 3 − 5x 2 − x + 5 = 0 Factor by grouping.

 x 2(x − 5) − (x − 5) = 0 Factor out the common factor.

 (x 2 − 1)(x − 5) = 0 Factor the di!erence of squares.

 (x + 1)(x − 1)(x − 5) = 0 Set each factor equal to zero.

x + 1 = 0 or x − 1 = 0 or x − 5 = 0

x = −1           x = 1      x = 5

�ere are three x-intercepts: (−1, 0), (1, 0), and (5, 0). See Figure 4.
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Example 4 Finding the y- and x-Intercepts of a Polynomial in Factored Form

Find the y- and x-intercepts of g(x) = (x − 2)2(2x + 3).

Solution �e y-intercept can be found by evaluating g(0).

 g(0) = (0 − 2)2(2(0) + 3)

 = 12

So the y-intercept is (0, 12).

�e x-intercepts can be found by solving g(x) = 0.

(x − 2)2(2x + 3) = 0

 (x − 2)2 = 0 (2x + 3) = 0

 x − 2 = 0      or x = − #
3

 __ 
2

  

 x = 2

So the x-intercepts are (2, 0) and  ( − #
3

 __ 
2

  , 0 ) .

Analysi s We can always check that our answers are reasonable by using a graphing calculator to graph the polynomial 

as shown in Figure 5.
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Example 5 Finding the x-Intercepts of a Polynomial Function Using a Graph

Find the x-intercepts of h(x) = x3 + 4x2 + x − 6.

Solution �is polynomial is not in factored form, has no common factors, and does not appear to be factorable using 

techniques previously discussed. Fortunately, we can use technology to �nd the intercepts. Keep in mind that some 

values make graphing di"cult by hand. In these cases, we can take advantage of graphing utilities.

Looking at the graph of this function, as shown in Figure 6, it appears that there are x-intercepts at x = −3, −2, and 1.
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We can check whether these are correct by substituting these values for x and verifying that

 h(−3) = h(−2) = h(1) = 0.

Since h(x) = x 3 + 4x 2 + x − 6, we have:

 h(−3) = (−3)3 + 4(−3)2 + (−3) − 6 = −27 + 36 − 3 − 6 = 0

 h(−2) = (−2)3 + 4(−2)2 + (−2) − 6 = −8 + 16 − 2 − 6 = 0

 h(1) = (1)3 + 4(1)2 + (1) − 6 = 1 + 4 + 1 − 6 = 0

Each x-intercept corresponds to a zero of the polynomial function and each zero yields a factor, so we can now write 

the polynomial in factored form.

 h(x) = x3 + 4x2 + x − 6

 = (x + 3)(x + 2)(x − 1)

Try It #1
Find the y- and x-intercepts of the function f (x) = x 4 − 19x 2 + 30x.

Identifying Zeros and Their Multiplicities

Graphs behave di!erently at various x-intercepts. Sometimes, the graph will cross over the horizontal axis at an 

intercept. Other times, the graph will touch the horizontal axis and "bounce" o!.

Suppose, for example, we graph the function shown.

f (x) = (x + 3)(x − 2)2(x + 1)3.

Notice in Figure 7 that the behavior of the function at each of the x-intercepts is di!erent.
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f (x) = (x + 3)(x − 2)2(x + 1)3

Figure 7 Identifying the behavior of the graph at an x-intercept by examining the multiplicity of the zero.

�e x-intercept x = −3 is the solution of equation (x + 3) = 0. �e graph passes directly through the x-intercept 

at x = −3. �e factor is linear (has a degree of 1), so the behavior near the intercept is like that of a line—it passes 

directly through the intercept. We call this a single zero because the zero corresponds to a single factor of the function.

�e x-intercept x = 2 is the repeated solution of equation (x − 2)2 = 0. �e graph touches the axis at the intercept and 

changes direction. �e factor is quadratic (degree 2), so the behavior near the intercept is like that of a quadratic—it 

bounces o! of the horizontal axis at the intercept.

(x − 2)2 = (x − 2)(x − 2)

�e factor is repeated, that is, the factor (x − 2) appears twice. �e number of times a given factor appears in the 

factored form of the equation of a polynomial is called the multiplicity. �e zero associated with this factor, x = 2, 

has multiplicity 2 because the factor (x − 2) occurs twice.
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�e x-intercept x = −1 is the repeated solution of factor (x + 1)3 = 0. �e graph passes through the axis at the intercept, 

but %attens out a bit �rst. �is factor is cubic (degree 3), so the behavior near the intercept is like that of a cubic—

with the same S-shape near the intercept as the toolkit function f (x) = x 3. We call this a triple zero, or a zero with 

multiplicity 3.

For zeros with even multiplicities, the graphs touch or are tangent to the x-axis. For zeros with odd multiplicities, the 

graphs cross or intersect the x-axis. See Figure 8 for examples of graphs of polynomial functions with multiplicity 1, 

2, and 3.
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For higher even powers, such as 4, 6, and 8, the graph will still touch and bounce o! of the horizontal axis but, for 

each increasing even power, the graph will appear %atter as it approaches and leaves the x-axis.

For higher odd powers, such as 5, 7, and 9, the graph will still cross through the horizontal axis, but for each increasing 

odd power, the graph will appear %atter as it approaches and leaves the x-axis.

graphical behavior of polynomials at x-intercepts 

If a polynomial contains a factor of the form (x − h)p, the behavior near the x-intercept h is determined by the 

power p. We say that x = h is a zero of multiplicity p.

�e graph of a polynomial function will touch the x-axis at zeros with even multiplicities. �e graph will cross 

the x-axis at zeros with odd multiplicities.

�e sum of the multiplicities is the degree of the polynomial function.

How To…
Given a graph of a polynomial function of degree n, identify the zeros and their multiplicities.

1. If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero.

2. If the graph touches the x-axis and bounces o! of the axis, it is a zero with even multiplicity.

3. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity.

4. �e sum of the multiplicities is n.

Example 6 Identifying Zeros and Their Multiplicities 

Use the graph of the function of degree 6 in Figure 9 to identify the zeros of the function and their possible 

multiplicities.
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Solution �e polynomial function is of degree 6. �e sum of the multiplicities must be 6.

Starting from the le&, the �rst zero occurs at x = −3. �e graph touches the x-axis, so the multiplicity of the zero must 

be even. �e zero of −3 most likely has multiplicity 2.

�e next zero occurs at x = −1. �e graph looks almost linear at this point. �is is a single zero of multiplicity 1.

�e last zero occurs at x = 4. �e graph crosses the x-axis, so the multiplicity of the zero must be odd. We know 

that the multiplicity is likely 3 and that the sum of the multiplicities is likely 6.

Try It #2
Use the graph of the function of degree 5 in Figure 10 to identify the zeros of the function and their multiplicities.
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Determining End Behavior

As we have already learned, the behavior of a graph of a polynomial function of the form

f (x) = a
n 
x n + a

n − 1 
x n − 1 + ... + a

1 
x + a

0

will either ultimately rise or fall as x increases without bound and will either rise or fall as x decreases without bound. 

�is is because for very large inputs, say 100 or 1,000, the leading term dominates the size of the output. �e same is 

true for very small inputs, say −100 or −1,000.

Recall that we call this behavior the end behavior of a function. As we pointed out when discussing quadratic equations, 

when the leading term of a polynomial function, a
n
xn, is an even power function, as x increases or decreases without 

bound, f (x) increases without bound. When the leading term is an odd power function, as x decreases without bound, 

f (x) also decreases without bound; as x increases without bound, f (x) also increases without bound. If the leading term 

is negative, it will change the direction of the end behavior. Figure 11 summarizes all four cases.
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Even Degree Odd Degree

Positive Leading Coe"cient, a
n
 > 0

y

x

End Behavior:

x → ∞, f (x) → ∞

x → −∞, f (x) → ∞

Positive Leading Coe"cient, a
n
 > 0

y

x

End Behavior:

x → ∞, f (x) → ∞

x → −∞, f (x) → ∞

Negative Leading Coe"cient, a
n
 < 0

y

x

End Behavior:

x → ∞, f (x) → −∞
x → −∞, f (x) → −∞

Negative Leading Coe"cient, a
n
 < 0

y

x

End Behavior:

x → ∞, f (x) → −∞
x → −∞, f (x) → ∞

Figure 11

Understanding the Relationship Between Degree and Turning Points

In addition to the end behavior, recall that we can analyze a polynomial function’s local behavior. It may have a turning 

point where the graph changes from increasing to decreasing (rising to falling) or decreasing to increasing (falling 

to rising). Look at the graph of the polynomial function f (x) = x4 − x3 − 4x2 + 4x in Figure 12. �e graph has three 

turning points.

y
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Decreasing

Increasing

Increasing

Turning points

x

Figure 12

�is function f is a 4th degree polynomial function and has 3 turning points. �e maximum number of turning points 

of a polynomial function is always one less than the degree of the function.
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interpreting turning points 

A turning point is a point of the graph where the graph changes from increasing to decreasing (rising to falling) 

or decreasing to increasing (falling to rising).

A polynomial of degree n will have at most n − 1 turning points.

Example 7  Finding the Maximum Number of Turning Points Using the Degree of a Polynomial Function

Find the maximum number of turning points of each polynomial function.

a. f (x) = −x 3 + 4x 5 − 3x 2 + 1   b. f (x) = −(x − 1)2(1 + 2x2)

Solution

  a. f (x) = −x 3 + 4x 5 − 3x 2 + 1

First, rewrite the polynomial function in descending order: f (x) = 4x 5 − x 3 − 3x 2 + 1 

Identify the degree of the polynomial function. �is polynomial function is of degree 5.

�e maximum number of turning points is 5 − 1 = 4.

  b. f (x) = −(x − 1)2(1 + 2x2)

First, identify the leading term of the polynomial function if the function were expanded.

f (x) = −(x − 1)2(1 + 2x2)

 a
n
 = −(x 2)(2x 2) − 2x 4

�en, identify the degree of the polynomial function. �is polynomial function is of degree 4.

�e maximum number of turning points is 4 − 1 = 3.

Graphing Polynomial Functions

We can use what we have learned about multiplicities, end behavior, and turning points to sketch graphs of polynomial 

functions. Let us put this all together and look at the steps required to graph polynomial functions.

How To…
Given a polynomial function, sketch the graph.

1. Find the intercepts.

2. Check for symmetry. If the function is an even function, its graph is symmetrical about the y-axis, that is, 

f (−x) = f (x). If a function is an odd function, its graph is symmetrical about the origin, that is, f (−x) = −f (x).

3. Use the multiplicities of the zeros to determine the behavior of the polynomial at the x-intercepts.

4. Determine the end behavior by examining the leading term.

5. Use the end behavior and the behavior at the intercepts to sketch a graph.

6. Ensure that the number of turning points does not exceed one less than the degree of the polynomial.

7. Optionally, use technology to check the graph.

Example 8 Sketching the Graph of a Polynomial Function

Sketch a graph of f (x) = −2(x + 3)2(x − 5).

Solution �is graph has two x-intercepts. At x = −3, the factor is squared, indicating a multiplicity of 2. �e graph 

will bounce at this x-intercept. At x = 5, the function has a multiplicity of one, indicating the graph will cross through 

the axis at this intercept.

�e y-intercept is found by evaluating f (0).
 f (0) = −2(0 + 3)2(0 − 5)

 = −2 ċ 9 ċ (−5)

 = 90

�e y-intercept is (0, 90).
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Additionally, we can see the leading term, if this polynomial were multiplied out, would be −2x3, so the end behavior 

is that of a vertically re%ected cubic, with the outputs decreasing as the inputs approach in�nity, and the outputs 

increasing as the inputs approach negative in�nity. See Figure 13.
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Figure 13

To sketch this, we consider that:

• As x → −∞ the function f (x) → ∞, so we know the graph starts in the second quadrant and is decreasing toward 

the x-axis.

• Since f (−x) = −2(−x + 3)2 (−x − 5) is not equal to f (x), the graph does not display symmetry.

• At (−3, 0), the graph bounces o! of the x-axis, so the function must start increasing. At (0, 90), the graph crosses 

the y-axis at the y-intercept. See Figure 14.
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Figure 14

Somewhere a&er this point, the graph must turn back down or start decreasing toward the horizontal axis because 

the graph passes through the next intercept at (5, 0). See Figure 15.
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Figure 15

As x → ∞ the function f (x) → −∞, so we know the graph continues to decrease, and we can stop drawing the graph 

in the fourth quadrant.
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Using technology, we can create the graph for the polynomial function, shown in Figure 16, and verify that the 

resulting graph looks like our sketch in Figure 15.
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f (x) = −2(x + 3)2(x − 5)

Figure 16 The complete graph of the polynomial function f (x ) = −2(x + 3)2(x − 5)

Try It #3
Sketch a graph of f (x) =   

1
 __ 

4
  x(x − 1)4(x + 3)3.

Using the Intermediate Value Theorem

In some situations, we may know two points on a graph but not the zeros. If those two points are on opposite sides of 

the x-axis, we can con�rm that there is a zero between them. Consider a polynomial function f whose graph is smooth 

and continuous. �e Intermediate Value "eorem states that for two numbers a and b in the domain of f, if a < b 

and f (a) ≠ f (b), then the function f takes on every value between f (a) and f (b). (While the theorem is intuitive, the 

proof is actually quite complicated and require higher mathematics.) We can apply this theorem to a special case that 

is useful in graphing polynomial functions. If a point on the graph of a continuous function f at x = a lies above the 

x-axis and another point at x = b lies below the x-axis, there must exist a third point between x = a and x = b where 

the graph crosses the x-axis. Call this point (c, f (c)). �is means that we are assured there is a solution c where f (c) = 0.

In other words, the Intermediate Value �eorem tells us that when a polynomial function changes from a negative 

value to a positive value, the function must cross the x-axis. Figure 17 shows that there is a zero between a and b.
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f (c) = 0

Figure 17 Using the Intermediate Value Theorem to show there exists a zero

Intermediate Value !eorem 

Let f be a polynomial function. �e Intermediate Value "eorem states that if f (a) and f (b) have opposite signs, 

then there exists at least one value c between a and b for which f (c) = 0.
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Example 9 Using the Intermediate Value Theorem

Show that the function f (x) = x3 − 5x2 + 3x + 6 has at least two real zeros between x = 1 and x = 4.

Solution As a start, evaluate f (x) at the integer values x = 1, 2, 3, and 4. See Table 2.

x 1 2 3 4

f (x) 5 0 −3 2

Table 2

We see that one zero occurs at x = 2. Also, since f (3) is negative and f (4) is positive, by the Intermediate Value �eorem, 

there must be at least one real zero between 3 and 4.

We have shown that there are at least two real zeros between x = 1 and x = 4.

Analysi s We can also see on the graph of the function in Figure 18 that there are two real zeros between x = 1 and 

x = 4.

4

f (3) = −3 is negative

f (4) = 2 is positive

f (1) = 5 is positive
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Try It #4
Show that the function f (x) = 7x5 − 9x4 − x2 has at least one real zero between x = 1 and x = 2.

Writing Formulas for Polynomial Functions

Now that we know how to �nd zeros of polynomial functions, we can use them to write formulas based on graphs. 

Because a polynomial function written in factored form will have an x-intercept where each factor is equal to zero, we 

can form a function that will pass through a set of x-intercepts by introducing a corresponding set of factors.

factored form of polynomials 

If a polynomial of lowest degree p has horizontal intercepts at x = x
1
, x

2
, …, x

n
, then the polynomial can be written 

in the factored form: f (x) = a(x − x
1)

p1
 (x − x

2)
p2 … (x − x

n)
pn where the powers p

i
 on each factor can be determined 

by the behavior of the graph at the corresponding intercept, and the stretch factor a can be determined given a 

value of the function other than the x-intercept.

How To…
Given a graph of a polynomial function, write a formula for the function.

1. Identify the x-intercepts of the graph to �nd the factors of the polynomial.

2. Examine the behavior of the graph at the x-intercepts to determine the multiplicity of each factor.

3. Find the polynomial of least degree containing all the factors found in the previous step.

4. Use any other point on the graph (the y-intercept may be easiest) to determine the stretch factor.
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Example 10 Writing a Formula for a Polynomial Function from the Graph

Write a formula for the polynomial function shown in Figure 19.
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–6 2 4

4

6

6

Figure 19

Solution �is graph has three x-intercepts: x = −3, 2, and 5. �e y-intercept is located at (0, −2). At x = −3 and x = 5, 

the graph passes through the axis linearly, suggesting the corresponding factors of the polynomial will be linear. At 

x = 2, the graph bounces at the intercept, suggesting the corresponding factor of the polynomial will be second degree 

(quadratic). Together, this gives us

 f (x) = a(x + 3)(x − 2)2(x − 5)

To determine the stretch factor, we utilize another point on the graph. We will use the y-intercept (0, −2), to solve for a.

 f (0) = a(0 + 3)(0 − 2)2(0 − 5)

 −2 = a(0 + 3)(0 − 2)2(0 − 5)

 −2 = −60a

 a =   
1

 __ 
30

  

�e graphed polynomial appears to represent the function f (x) =   
1

 __ 
30

  (x + 3)(x − 2)2 (x − 5).

Try It #5
Given the graph shown in Figure 20, write a formula for the function shown.
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Figure 20  

Using Local and Global Extrema

With quadratics, we were able to algebraically �nd the maximum or minimum value of the function by �nding the 

vertex. For general polynomials, �nding these turning points is not possible without more advanced techniques from 

calculus. Even then, �nding where extrema occur can still be algebraically challenging. For now, we will estimate the 

locations of turning points using technology to generate a graph.

Each turning point represents a local minimum or maximum. Sometimes, a turning point is the highest or lowest 

point on the entire graph. In these cases, we say that the turning point is a global maximum or a global minimum. 

�ese are also referred to as the absolute maximum and absolute minimum values of the function.
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local and global extrema 

A local maximum or local minimum at x = a (sometimes called the relative maximum or minimum, respectively) 

is the output at the highest or lowest point on the graph in an open interval around  x = a. If a function has a local 

maximum at a, then f (a) ≥ f (x) for all x in an open interval around x = a. If a function has a local minimum at a, 

then f (a) ≤ f (x) for all x in an open interval around x = a.

A global maximum or global minimum is the output at the highest or lowest point of the function. If a function 

has a global maximum at a, then f (a) ≥ f (x) for all x. If a function has a global minimum at a, then f (a) ≤ f (x) 

for all x.

We can see the di!erence between local and global extrema in Figure 21.
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Figure 21 

Q & A…
Do all polynomial functions have a global minimum or maximum?

No. Only polynomial functions of even degree have a global minimum or maximum. For example, f (x) = x has neither 

a global maximum nor a global minimum.

Example 11 Using Local Extrema to Solve Applications

An open-top box is to be constructed by cutting out squares from each corner of a 14 cm by 20 cm sheet of plastic 

then folding up the sides. Find the size of squares that should be cut out to maximize the volume enclosed by the box.

Solution We will start this problem by drawing a picture like that in Figure 22, labeling the width of the cut-out 

squares with a variable, w.

w

w

w

w

w

w

w

w

Figure 22

Notice that a&er a square is cut out from each end, it leaves a  (14 − 2w) cm by (20 − 2w) cm rectangle for the base of 

the box, and the box will be w cm tall. �is gives the volume

 V(w) = (20 − 2w)(14 − 2w)w

 = 280w − 68w2 + 4w3
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Notice, since the factors are w, 20 − 2w and 14 − 2w, the three zeros are 10, 7, and 0, respectively. Because a height of  

0 cm is not reasonable, we consider the only the zeros 10 and 7. �e shortest side is 14 and we are cutting o! two squares, 

so values w may take on are greater than zero or less than 7. �is means we will restrict the domain of this function to  

0 < w < 7. Using technology to sketch the graph of V(w) on this reasonable domain, we get a graph like that in Figure 

23. We can use this graph to estimate the maximum value for the volume, restricted to values for w that are reasonable 

for this problem—values from 0 to 7.
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–200
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w

V(w)

V(w) = 280w − 68w2 + 4w3

Figure 23

From this graph, we turn our focus to only the portion on the reasonable domain, [0, 7]. We can estimate the maximum 

value to be around 340 cubic cm, which occurs when the squares are about 2.75 cm on each side. To improve this estimate, 

we could use advanced features of our technology, if available, or simply change our window to zoom in on our graph 

to produce Figure 24.
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330
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Figure 24

From this zoomed-in view, we can re�ne our estimate for the maximum volume to about 339 cubic cm, when the 

squares measure approximately 2.7 cm on each side.

Try It #6
Use technology to �nd the maximum and minimum values on the interval [−1, 4] of the function  

f (x) = −0.2(x − 2)3(x + 1)2(x − 4).

Access the following online resource for additional instruction and practice with graphing polynomial functions.

• Intermediate Value Theorem (http://openstaxcollege.org/l/ivt)
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5.3 SECTION EXERCISES

VERBAL

1. What is the di!erence between an x-intercept and  

a zero of a polynomial function f ?

2. If a polynomial function of degree n has n distinct 

zeros, what do you know about the graph of the 

function?

3. Explain how the Intermediate Value �eorem can 

assist us in �nding a zero of a function.

4. Explain how the factored form of the polynomial 

helps us in graphing it.

5. If the graph of a polynomial just touches the x-axis 

and then changes direction, what can we conclude 

about the factored form of the polynomial?

ALGEBRAIC

For the following exercises, �nd the x- or t-intercepts of the polynomial functions.

6. C(t) = 2(t − 4)(t + 1)(t − 6) 7. C(t) = 3(t + 2)(t − 3)(t + 5) 8. C(t) = 4t(t − 2)2(t + 1)

9. C(t) = 2t(t − 3)(t + 1)2
10. C(t) = 2t4 − 8t3 + 6t2

11. C(t) = 4t4 + 12t3 − 40t2

12. f (x) = x4 − x2
13. f (x) = x3 + x2 − 20x 14. f (x) = x3 + 6x2 − 7x

15. f (x) = x3 + x2 − 4x − 4 16. f (x) = x3 + 2x2 − 9x − 18 17. f (x) = 2x3 − x2 − 8x + 4

18. f (x) = x6 − 7x3 − 8 19. f (x) = 2x4 + 6x2 − 8 20. f (x) = x3 − 3x2 − x + 3

21. f (x) = x6 − 2x4 − 3x2
22. f (x) = x6 − 3x4 − 4x2

23. f (x) = x5 − 5x3 + 4x

For the following exercises, use the Intermediate Value �eorem to con�rm that the given polynomial has at least 

one zero within the given interval.

24. f (x) = x3 − 9x, between x = −4 and x = −2. 25. f (x) = x3 − 9x, between x = 2 and x = 4.

26. f (x) = x5 − 2x, between x = 1 and x = 2. 27. f (x) = −x4 + 4, between x = 1 and x = 3.

28. f (x) = −2x3 − x, between x = −1 and x = 1. 29. f (x) = x3 − 100x + 2, between x = 0.01 and x = 0.1

For the following exercises, �nd the zeros and give the multiplicity of each.

30. f (x) = (x + 2)3(x − 3)2
31. f (x) = x2(2x + 3)5(x − 4)2

32. f (x) = x3 (x − 1)3(x + 2) 33. f (x) = x2(x2 + 4x + 4)

34. f (x) = (2x + 1)3(9x2 − 6x + 1) 35. f (x) = (3x + 2)5(x2 − 10x + 25)

36. f (x) = x(4x2 − 12x + 9)(x2 + 8x + 16) 37. f (x) = x6 − x5 − 2x4

38. f (x) = 3x4 + 6x3 + 3x2
39. f (x) = 4x5 − 12x4 + 9x3

40. f (x) = 2x4(x3 − 4x2 + 4x) 41. f (x) = 4x4(9x4 − 12x3 + 4x2)

GRAPHICAL

For the following exercises, graph the polynomial functions. Note x- and y-intercepts, multiplicity, and end behavior.

42. f (x) = (x + 3)2(x − 2) 43. g(x) = (x + 4)(x − 1)2
44. h(x) = (x − 1)3(x + 3)2

45. k(x) = (x − 3)3(x − 2)2
46. m(x) = −2x(x − 1)(x + 3) 47. n(x) = −3x(x + 2)(x − 4)
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For the following exercises, use the graphs to write the formula for a polynomial function of least degree.

48.  
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For the following exercises, use the graph to identify zeros and multiplicity.

53.  
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For the following exercises, use the given information about the polynomial graph to write the equation.

57. Degree 3. Zeros at x = −2, x = 1, and x = 3. 

y-intercept at (0, −4).

58. Degree 3. Zeros at x = −5, x = −2, and x = 1. 

y-intercept at (0, 6)

59. Degree 5. Roots of multiplicity 2 at x = 3 and x = 1, 

and a root of multiplicity 1 at x = −3. y-intercept at 

(0, 9)

60. Degree 4. Root of multiplicity 2 at x = 4, and roots 

of multiplicity 1 at x = 1 and x = −2. y-intercept at 

(0, −3).
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61. Degree 5. Double zero at x = 1, and triple zero at 

x = 3. Passes through the point (2, 15).

62. Degree 3. Zeros at x = 4, x = 3, and x = 2. 

y-intercept at (0, −24).

63. Degree 3. Zeros at x = −3, x = −2 and x = 1. 

y-intercept at (0, 12).

64. Degree 5. Roots of multiplicity 2 at x = −3 and x = 2 

and a root of multiplicity 1 at x = −2. y-intercept at (0, 4).

65. Degree 4. Roots of multiplicity 2 at x =   
1

 _ 
2

   and roots 

of multiplicity 1 at x = 6 and x = −2. y-intercept  
at (0,18).

66. Double zero at x = −3 and triple zero at x = 0. 

Passes through the point (1, 32).

TECHNOLOGY
For the following exercises, use a calculator to approximate local minima and maxima or the global minimum and 

maximum.

67. f (x) = x3 − x − 1 68. f (x) = 2x3 − 3x − 1 69. f (x) = x4 + x

70. f (x) = −x4 + 3x − 2 71. f (x) = x4 − x3 + 1

EXTENSIONS
For the following exercises, use the graphs to write a polynomial function of least degree.
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REAL-WORLD APPLICATIONS
For the following exercises, write the polynomial function that models the given situation.

75. A rectangle has a length of 10 units and a width of  

8 units. Squares of x by x units are cut out of each 

corner, and then the sides are folded up to create 

an open box. Express the volume of the box as a 

polynomial function in terms of x.

76. Consider the same rectangle of the preceding 

problem. Squares of 2x by 2x units are cut out of 

each corner. Express the volume of the box as a 

polynomial in terms of x.

77. A square has sides of 12 units. Squares x + 1 by  

x + 1 units are cut out of each corner, and then the 

sides are folded up to create an open box. Express 

the volume of the box as a function in terms of x.

78. A cylinder has a radius of x + 2 units and a height of  

3 units greater. Express the volume of the cylinder as 

a polynomial function.

79. A right circular cone has a radius of 3x + 6 and a 

height 3 units less. Express the volume of the cone  
as a polynomial function. �e volume of a cone is  

V =   
1

 _ 
3

  πr 2h for radius r and height h.
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