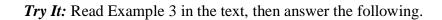
GUIDED NOTES – 2.4 COMPLEX NUMBERS


LEARNING OBJECTIVES

3.

In this section, you will:

- Add and subtract complex numbers.
- Multiply and Divide complex numbers.

Ex	PRESSING SQUARE ROOTS OF NEGATIVE NUMBERS AS MULTIPLES OF <i>i</i>
•	If the value in the radicand is negative, the root is said to be an The imaginary number <i>i</i> is defined as
	If $i = \underline{\hspace{1cm}}$, then $i^2 = \underline{\hspace{1cm}}$.
•	A complex number is expressed in standard form when written Where <i>a</i> is and <i>b</i> is Give an example of a complex number in standard form below.
•	If $b = 0$, then $a + bi$ is a If $a = 0$ and b is not equal to 0, the complex number is called a
	<i>Try It:</i> Read Example 1 in the text, then answer the following.
	Express $\sqrt{-24}$ in standard form.
<u>A</u> I	DDING AND SUBTRACTING COMPLEX NUMBERS
•	Write out the 3 step process for finding the sum or difference of two complex numbers.
	1.
	2.

Subtract 2 + 5i from 3 - 4i.

MULTIPLYING COMPLEX NUMBERS

• Write out the 2 step process for multiplying to find the product given a complex number and a real number.

1.

2.

Try It: Read Example 4 in the text, then answer the following.

Find the product: $\frac{1}{2}(5-2i)$.

• Write out the 3 step process for multiplying to find the product given two complex numbers.

1.

2.

3.

	Multiply: $(3 - 4i)(2 + 3i)$
Dı	VIDING COMPLEX NUMBERS
•	Dividing two complex numbers can be more complicated, because we cannot divide by an imaginary number. This means a fraction must have a
Stı	when a complex number is multiplied or added to its complex conjugate, the result is a
	<i>Try It:</i> Read Example 6 in the text, then answer the following. Find the complex conjugate of $-3 + 4i$.
•	Write out the 4 step process for dividing two complex numbers. 1.
	 3.

Try It: Read Example 5 in the text, then answer the following.

4.

Divide:
$$(2 - 6i)$$
 by $(4 + 8i)$

SIMPLIFYING POWERS OF i

The powers of i are cyclic. Fill out the values for the increasing powers of i.

$$i^5 =$$

$$i^2 =$$
______ $i^6 =$ _____

$$i^6 =$$

$$i^3 =$$

$$i^8 =$$

- The cycle is repeated every _____ powers.
 - *Try It:* Read Example 8 in the text, then answer the following.

Evaluate: i^{18}