Guided Notes – 3.5 Transformations of Functions

LEARNING OBJECTIVES

In this section, you will:

- Graph functions using vertical and horizontal shifts.
- Graph functions using reflections about the *x*-axis and the *y*-axis.
- Determine whether a function is even, odd, or neither from its graph.
- Graph functions using compressions and stretches.
- Combine transformations.

GRAPHING FUNCTIONS USING VERTICAL AND HORIZONTAL SHIFTS

Study the box in your textbook section titled "vertical shift."

- Given a function f(x), a new function g(x) =_____, where k is a _____, is a vertical shift of the function f(x). All the outputs will change by units.
 - If *k* is positive, _____.
 - If k is negative, _____.
- Write out the 3 step procedure for creating a new row to represent a vertical shift, given a tabular function
 - 1.
 - 2.
 - 3.

Try It: Read Examples 1 and 2 in the text, then answer the following.

The function $h(t) = -4.9t^2 + 30t$ gives the height *h* of a ball (in meters) thrown upward from the ground after *t* seconds. Suppose the ball was instead thrown from the top of a 10-m building. Relate this new height function b(t) to h(t), and then find a formula for b(t).

Study the box in your textbook section titled "horizontal shift."

- Given a function f(x), a new function g(x) = _____, where h is a _____, is a horizontal shift of the function f.
 - If *h* is positive, _____.
 - If *h* is negative, _____.
- Write out the 3 step procedure for creating a new row to represent a horizontal shift, given a tabular function.
 - 1.
 - 2.
 - 3.

Try It: Read Examples 5 and 6 in the text, then answer the following.

Given the function $f(x) = \sqrt{x}$, graph the original function f(x) and the transformation g(x) = f(x + 2) on the same axes. Is this a horizontal or vertical shift? Which way was the graph shifted and by how many units?

© UTSA Math Matters 2017

• Write out the 4 step procedure for sketching a graph, given a function and both a vertical and horizontal shift.

Try It: Read Example 7 in the text, then answer the following.

Given f(x) = |x|, sketch a graph of h(x) = f(x - 2) + 4.

Try It: Read Example 8 in the text, then answer the following.

Write a formula for a transformation of the toolkit reciprocal function $f(x) = \frac{1}{x}$ that shifts the function's graph one unit to the right and one unit up.

GRAPHING FUNCTIONS USING REFLECTIONS ABOUT THE AXES

Study the box in your textbook section titled "reflections."

Given a function f(x), a new function g(x) = _____, is a vertical reflection of the function f(x), sometimes called a _____.
Given a function f(x), a new function g(x) = _____, is a horizontal reflection of the function

```
f(x), sometimes called a _____.
```

- Write out the 2 step procedure for reflecting a graph both vertically and horizontally, given a function.
 - 1.
 - 2.

Try It: Read Example 9 in the text, then answer the following.

Reflect the graph of f(x) = |x + 1|**a.** vertically **b.** horizontally

Try It: Read Example 10 in the text, then answer the following.

A function f(x) is given as **Table 9**. Create a table for the functions below.

x	-2	0	2	4		
f(x)	5	10	15	20		
Table 9						

Try It: Read Example 11 in the text, then answer the following.

Given the toolkit function $f(x) = x^2$, graph g(x) = -f(x) and h(x) = f(-x). Take note of any surprising behavior for these functions.

DETERMINING EVEN AND ODD FUNCTIONS

Study the box in your textbook section titled "even and odd functions."

- A function is called an even function if for every input *x*: ______.
 - The graph of an even function is symmetrical about the _____.
- A function is called an odd function if for every input *x*: ______.
 - The graph of an odd function is symmetrical about the _____.

Try It: Read Example 12 in the text, then answer the following.

Is the function $f(s) = s^4 + 3s^2 + 7$ even, odd, or neither?

GRAPHING FUNCTIONS USING STRETCHES AND COMPRESSIONS

Study the box in your textbook section titled "vertical stretches and compressions."

- Given a function f(x), a new function g(x) = _____, were a is constant, is a vertical stretch or vertical compression of f(x).
 - The graph will be stretched when _____.

© UTSA Math Matters 2017

- The graph will be compressed when _____.
- The graph will have a combination of vertical stretch or compression with a vertical reflection when _____.
- Write out the 3 step procedure for graphing a vertical stretch, given a function.

1.

- 2.
- 3.
- Write out the 2 step procedure for creating a table for a vertical compression, given a tabular function and assuming that the transformation is a vertical stretch or compression.

1.

2.

Try It: Read Example 14 in the text, then answer the following.

A function f is given as **Table 12**. Create a table for the function $g(x) = \frac{3}{4}f(x)$.

x	2	4	6	8			
f(x)	12	16	20	0			
	Table 12						
x							
g(x)							

Try It: Read Example 15 in the text, then answer the following.

Write the formula for the function that we get when we stretch the identity toolkit function by a factor of 3, and then shift it down by 2 units.

Study the box in your textbook section titled "horizontal stretches and compressions."

- Given a function f(x), a new function g(x) = _____, where b is constant, is a horizontal stretch or horizontal compression of f(x).
 - The graph will be compressed by $\frac{1}{b}$ when _____.
 - The graph will be stretched by $\frac{1}{b}$ when _____.
 - The graph will have a combination of horizontal stretch or compression with a horizontal reflection when _____.
- Write out the 2 step procedure for sketching a horizontal compression or stretch, given a description of a function.
 - 1.
 - 2.

Try It: Read Examples 16, 17, and 18 in the text, then answer the following.

Write a formula for the toolkit square root function horizontally stretched by a factor of 3.

PERFORMING A SEQUENCE OF TRANSFORMATIONS

Study the box in your textbook section titled "combining transformations."

•	When combining vertical transformations written in the form $af(x) + k$, first,
	and then
•	When combining horizontal transformations written in the form $f(bx - h)$, first,
	and then
•	When combining horizontal transformations written in the form $f(b(x - h))$, first
	, and then

* Remember that horizontal and vertical transformations are independent, so it does not matter whether horizontal or vertical transformations are performed first.