GUIDED NOTES - 6.1 EXPONENTIAL FUNCTIONS

LEARNING OBJECTIVES

In this section, you will:

- Evaluate exponential functions.
- Find the equation of an exponential function.
- Use compound interest formulas.
- Evaluate exponential functions with base *e*.

IDENTIFYING EXPONENTIAL FUNCTIONS

Study the box in your textbook section titled "exponential function."

• For any real number x, an exponential function is a function with the form

$$f(x) = \underline{\hspace{1cm}}$$

- *a* is known as the _____
- b is a positive real number such that b ____1
- The domain of *f* is _____
- The range of f is all positive numbers if a _____ 0 or all negative numbers if a _____ 0
- The y-intercept is _____, and the horizontal asymptote is y =_____

Try It: Read Example 1 in the text, then answer the following.

Which of the following equations represent exponential functions?

a.
$$f(x) = 2x^2 - 3x + 1$$

b.
$$g(x) = 0.875^x$$

c.
$$h(x) = 1.75x + 2$$

d.
$$j(x) = 1095.6^{-2x}$$

EVALUATING EXPONENTIAL FUNCTIONS

Try It: Read Example 2 in the text, then answer the following.

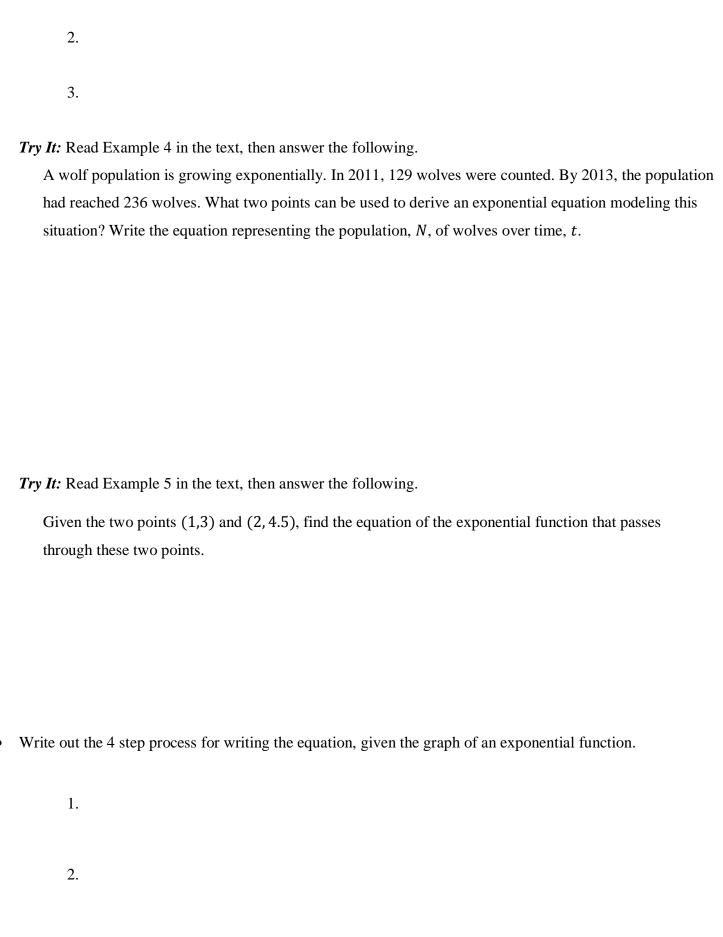
Let $f(x) = 8(1.2)^{x-5}$. Evaluate f(3) using a calculator. Round to four decimal places.

Study the box in your textbook section titled "exponential growth."

• For any real number x and any positive real numbers a and b such that $b \ne 1$, an exponential growth function has the form

f(x) = , where

a is the ______ or _____ value of the functionb is the growth ______ or growth ______ per unit x

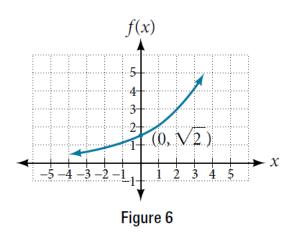

Try It: Read Example 3 in the text, then answer the following.

The population of China was about 1.39 billion in the year 2013, with an annual growth rate of about 0.6%. This situation is represented by the growth function $P(t) = 1.39(1.006)^t$, where t is the number of years since 2013. To the nearest thousandth, what will the population of China be for the year 2031?

FINDING EQUATIONS OF EXPONENTIAL FUNCTIONS

• Write out the 3 step process for writing an exponential model, given two data points.

1.



3.

4.

Try It: Read Example 6 in the text, then answer the following.

Find the equation for the exponential function graphed in **Figure 6**.

APPLYING THE COMPOUND-INTEREST FORMULA

Study the box in your textbook section titled "the compound interest formula."

• Write the formula that is used to calculate compound interest below.

$$A(t) =$$

 $A(t) ext{ is the }$ ______

 $t ext{ is measured in }$ ______

 $P ext{ is the starting amount, often called }$ _______ or ______

 $r ext{ is the }$ _______ rate (APR) expressed as a decimal $n ext{ is the number of }$ _______ periods in one year

	<i>Try It:</i> Read Example 8 in the text, then answer the following.
	An initial investment of \$100,000 at 12% interest is compounded weekly (use 52 weeks in a year). What will the investment be worth in 30 years?
	<i>Try It:</i> Read Example 9 in the text, then answer the following.
	Refer to Example 9 . To the nearest dollar, how much would Lily need to invest if the account is compounded quarterly?
Ev	ALUATING FUNCTIONS WITH BASE e
Stu	dy the box in your textbook section titled "the number e."
•	Write the irrational number that the letter <i>e</i> represents.
	, as <i>n</i> increases without bound
•	The approximation of e is $e \approx $
	<i>Try It:</i> Read Example 10 in the text, then answer the following.
	Use a calculator to find $e^{0.5}$. Round to five decimal places.

Study the box in your textbook section titled "the continuous growth/decay formula."

For all real numbers t, and all positive numbers a and r, continuous growth or decay is represented by the formula A(t) = , where a is the _____ value r is the growth rate per unit time t is the When does the formula represent growth and when does it represent decay? For business applications, the continuous growth formula is called the formula and takes the form A(t) = , where P is the _____ or the ____ r is the growth or rate per time unit t is the _____ or ____ of investment Write out the 4 step process for solving a continuous growth or decay function, given the initial value, rate of growth or decay, and time, t. 1.

2.

		a.
		b.
	3.	
	4.	
		Example 11 in the text, then answer the following.
		invests \$100,000 at a nominal 12% interest per year compounded continuously. What will be
th	e value	of the investment in 30 years?
Try It	: Read I	Example 12 in the text, then answer the following.
U	sing the	data in Example 12 , how much radon-222 will remain after one year?