GUIDED NOTES – 6.7 EXPONENTIAL AND LOGARITHMIC MODELS

LEARNING OBJECTIVES

In this section, you will:

- Model exponential growth and decay.
- Use Newton's Law of Cooling.
- Use logistic-growth models.
- Choose an appropriate model for data.
- Express an exponential model in base *e*.

MODELING EXPONENTIAL GROWTH AND DECAY

Study the box in your textbook section titled "characteristics of the exponential function, $y = A_0 e^{kt}$ ".

• An exponential function with the form $y = A_0 e^{kt}$ has the following char

•	lunction
•	Horizontal asymptote:
•	Domain:
•	Range:
•	x-intercept:

• Increasing if and decreasing if

• *y*-intercept"

• Write the half-life formula below.

•	Write out the 3 step process for finding the decay rate, given the half-life.
	1.
	2.
	3.
	Try It: Read Example 2 in the text, then answer the following. The helf life of plutonium 244 is 80 000 000 years. Find the function that gives the amount of
	The half-life of plutonium-244 is 80,000,000 years. Find the function that gives the amount of plutonium-244 remaining as a function of time, measured in years.
	White out the 2 star process for determining the east given the percentage of southern 14 in an object
•	Write out the 2 step process for determining the age, given the percentage of carbon-14 in an object.
	1.
	2.
	<i>Try It:</i> Read Example 3 in the text, then answer the following.
	Cesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take more or less than 230 years until only 1 milligram remains?

Try It: Read Example 4 in the text, then answer the following.
Recent data suggests that, as of 2013, the rate of growth predicted by Moore's Law no longer holds. Growth has slowed to a doubling time of approximately three years. Find the new function that takes that longer doubling time into account.
Heine Newton's Law of Cooling
USING NEWTON'S LAW OF COOLING
Study the box in your textbook section titled "Newton's Law of Cooling".
• The temperature of an object, T , in surrounding air with temperature T , will behave according to the formula
$T(t) = \underline{\hspace{1cm}}$, where
t is
The difference between the initial temperature of the object and the surroundings is
k is a, the continuous rate of cooling of the object.
• Write out the 3 step process for applying Newton's Law of Cooling, given a set of conditions.
1.
2.
3.

temperature has rise	en to 45 degrees. How long will it take	for the temperature to rise to 60 degrees?
Using Logistic Growth	H MODELS	
		at first, but it has a reduced rate of growth
	es the model's upper bound, called the	
Study the box in your textb	ook section titled "logistic growth".	
• The logistic growth mo	odel is	
	f(x) =	_, where
the initial value is		
c is the	or the	
the constant determined	d by the rate of growth is	
•	6 in the text, then answer the following	
Using the model in	Example 6 , estimate the number of ca	ises of flu on day 15.

A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the

Try It: Read Example 5 in the text, then answer the following.

CHOOSING AN APPROPRIATE MODEL FOR DATA

• What are the three kinds of functions that are often useful in mathematical models?

•	When choosing between an exponential model or a logarithmic model we often look at the way the data
	curves, also called the
	1. An exponential curve is always concave away from its horizontal asymptote
	2. A logistic curve changes It starts concave then changes to concave
	beyond a certain point called the point of
	Two Its Deed Freezests 7 in the test of the second for full sections

Try It: Read Example 7 in the text, then answer the following.

Does a linear, exponential, or logarithmic model best fit the data in **Table 2**? Find the model.

x	1	2	3	4	5	6	7	8	9
y	3.297	5.437	8.963	14.778	24.365	40.172	66.231	109.196	180.034

Table 2

EXPRESSING AN EXPONENTIAL MODEL IN BASE e

•	Write out the 3 step process for changing a model to the form $y = A_0 e^{kx}$, given a model with the form
	$y = ab^x$.

1.

2.

3.

Try It: Read Example 8 in the text, then answer the following.

Change the function $y = 3(0.5)^x$ to one having e as the base.