GUIDED NOTES – 7.5 MATRICES AND MATRIX OPERATIONS

LEARNING OBJECTIVES

In this section, you will:

- Find the sum and difference of two matrices.
- Find scalar multiples of a matrix.
- Find the product of two matrices.

FINDING THE SUM AND DIFFERENCE OF TWO MATRICES

•	A matrix is a rectangular array of numbers ofter	referred to by its size or dimensions: m	$\times n$ where	
	<i>m</i> represent the number of	and <i>n</i> represent the number of		A
	matrix is usually named by a capital letter.			

$$K = \begin{bmatrix} 2 & 3 \\ 7 & 9 \\ 5 & 0 \end{bmatrix}$$

How many rows m and how many columns n does matrix K have?

Addition and subtraction is only possible when the matrices have the ______ dimensions.

Try It: Read Examples 3, 4, and 5 in the text, then answer the following. Add matrix *A* and matrix *B*.

$$A = \begin{bmatrix} 2 & 6 \\ 1 & 0 \\ 1 & -3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & -2 \\ 1 & 5 \\ -4 & 3 \end{bmatrix}$$

FINDING SCALAR MULTIPLES OF A MATRIX

• In many cases we need to multiply a matrix by a constant called a ______. A scalar multiple is any entry that results from _____.

Try It: Read Example 6 in the text, then answer the following.

Given matrix B, find -2B where

$$B = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$$

FINDING THE PRODUCT OF TWO MATRICES

Finding the product of two matrices is only possible when the inner dimensions are the ______.
 This means that the number of columns of the first matrix is equal to the number of ______ of the second matrix

$$A \cdot B$$
 $2 \times \underbrace{3}_{\text{same}} 3 \times 3$

Try It: Read Examples 8 and 9 in the text, then answer the following.

Given A and B, find AB and BA.

$$A = \begin{bmatrix} 2 & 6 \\ 1 & 0 \\ 1 & -3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & -8 & 0 \\ 2 & 1 & 4 \end{bmatrix}$$