GUIDED NOTES – 2.4 COMPLEX NUMBERS

LEARNING OBJECTIVES

In this section, you will:

- Add and subtract complex numbers.
- Multiply and Divide complex numbers.

EXPRESSING SQUARE ROOTS OF NEGATIVE NUMBERS AS MULTIPLES OF *i*

• If the value in the radicand is negative, the root is said to be an _____. The imaginary number *i* is defined as _____.

If i =____, then $i^2 =$ ____.

- A complex number is expressed in standard form when written _____, where *a* is ______, where *a* is ______. Give an example of a complex number in standard form below.
- If b = 0, then a + bi is a _____. If a = 0 and b is not equal to 0, the complex number is called a _____.

Try It: Read Example 1 in the text, then answer the following.

Express $\sqrt{-24}$ in standard form.

ADDING AND SUBTRACTING COMPLEX NUMBERS

• Write out the 3 step process for finding the sum or difference of two complex numbers.

1.

2.

3.

Try It: Read Example 3 in the text, then answer the following.

Subtract 2 + 5i from 3 - 4i.

Homework: You should now be ready to attempt problems 1-2 in "Homework – Section 2.4" on WeBWorK.

MULTIPLYING COMPLEX NUMBERS

Write out the 2 step process for multiplying to find the product given a complex number and a real number.
1.

2.

Try It: Read Example 4 in the text, then answer the following.

Find the product: $\frac{1}{2}(5-2i)$.

• Write out the 3 step process for multiplying to find the product given two complex numbers.

1.

2.

3.

Try It: Read Example 5 in the text, then answer the following.

Multiply: (3 - 4i)(2 + 3i)

Homework: You should now be ready to attempt problems 3-5 in "Homework – Section 2.4" on WeBWorK.

DIVIDING COMPLEX NUMBERS

- Dividing two complex numbers can be more complicated, because we cannot divide by an imaginary number. This means a fraction must have a ______ to write the answer in standard form a + b*i*.
- The term by which we can multiply the numerator and the denominator that will eliminate the imaginary portion of the denominator is called the ______. Please explain below how to find this term.

Study the box in your textbook titled "the complex conjugate."

• When a complex number is multiplied or added to its complex conjugate, the result is a

Try It: Read Example 6 in the text, then answer the following.

Find the complex conjugate of -3 + 4i.

• Write out the 4 step process for dividing two complex numbers.

1.

2.

3.

4.

Try It: Read Example 7 in the text, then answer the following.

Divide: (2 - 6i) by (4 + 8i)

Homework: You should now be ready to attempt problems 6-9 in "Homework – Section 2.4" on WeBWorK.

SIMPLIFYING POWERS OF *i*

• The powers of *i* are cyclic. Fill out the values for the increasing powers of *i*.

<i>i</i> =	$i^5 = $
<i>i</i> ² =	i ⁶ =
i ³ =	i ⁷ =
$i^4 =$	i ⁸ =

• The cycle is repeated every _____ powers.

Try It: Read Example 8 in the text, then answer the following.

Evaluate: i^{18}

Homework: You should now be ready to attempt problems 10-11 in "Homework – Section 2.4" on WeBWorK.