GUIDED NOTES – 2.6 OTHER TYPES OF EQUATIONS

LEARNING OBJECTIVES

In this section, you will:

- Solve equations using rational exponents.
- Solve equations using factoring.
- Solve radical equations.
- Solve absolute value equations.
- Solve other types of equations.

SOLVING EQUATIONS INVOLVING RATIONAL EXPONENTS

- Rational exponents are exponents that are fractions, were the numerator is a ______ and the denominator is a ______.
- We can solve equations in which a variable is raised to a rational exponent by raising both sides of the equation to the ______ of the exponent.

Study the box in your textbook section titled "rational exponents."

• List the 4 ways that you can rewrite $a^{\frac{m}{n}}$ below.

Try It: Read Example 1 in the text, then answer the following.

Evaluate $64^{\frac{2}{3}}$.

Try It: Read Example 2 in the text, then answer the following.

Solve the equation $x^{\frac{3}{2}} = 125$.

Try It: Read Example 3 in the text, then answer the following.

Solve:
$$(x+5)^{\frac{3}{2}} = 8$$
.

Homework: You should now be ready to attempt problems 1-2 in "Homework – Section 2.6" on WeBWorK.

SOLVING EQUATIONS USING FACTORING

• We have used factoring to solve quadratic equations, but it is a technique that we can use with many types of polynomial equations. When we are faced with an equation containing polynomials of degree higher than _____, we can often solve them by factoring.

Study the box in your textbook section titled "polynomial equations."

• Setting a polynomial equal to ______ gives us a polynomial equation. The total number of solutions (real and complex) to a polynomial equation is equal to ______.

Try It: Read Example 4 in the text, then answer the following.

Solve by factoring: $12x^4 = 3x^2$.

Try It: Read Example 5 in the text, then answer the following.

Solve by grouping: $x^3 + 3x^2 - 25x - 75 = 0$

Homework: You should now be ready to attempt problems 3-6 in "Homework – Section 2.6" on WeBWorK.

SOLVING RADICAL EQUATIONS

- ______ are equations that contain variables in the radicand. We must be careful when solving these equations because you can find ______ which are roots that are not solutions to the equations. Checking your answer in the original equation will confirm the true solutions.
- Write out the 5 step process for solving a radical equation.
 - 1.
 2.
 3.
 4.
 5.

Try It: Read Example 6 in the text, then answer the following.

Solve the radical equation: $\sqrt{x+3} = 3x - 1$

SOLVING AN ABSOLUTE VALUE EQUATION

Study the box in your textbook section titled "absolute value equations."

- The absolute value of x is written as |x|. Fill in its properties below:
 - If _____, then |x| = x. If x < 0, then |x| =_____.
- Given an absolute value equation in the form |ax + b| = c, fill in its properties below:

|ax + b| = c has no solution if _____. |ax + b| = c has one solution if _____.

- |ax + b| = c has two solutions if _____.
- Write out the 2 step process for solving an absolute value equation.

1.

2.

Try It: Read Example 8 in the text, then answer the following.

Solve the absolute value equation: |1 - 4x| + 8 = 13.

Homework: You should now be ready to attempt problems 11-14 in "Homework – Section 2.6" on WeBWorK.

SOLVING OTHER TYPES OF EQUATIONS

- Write out the 6 step process for solving an equation in quadratic form.
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.
 - 6.

Try It: Read Example 9 in the text, then answer the following.

Solve using substitution: $x^4 - 8x^2 - 9 = 0$.

Homework: You should now be ready to attempt problems 11-14 in "Homework – Section 2.6" on WeBWorK.

Try It: Read Example 11 in the text, then answer the following.

Solve
$$\frac{3x+2}{x-2} + \frac{1}{x} = \frac{-2}{x^2 - 2x}$$
.