GUIDED NOTES – 2.7 LINEAR INEQUALITIES AND ABSOLUTE VALUE INEQUALITIES

LEARNING OBJECTIVES

In this section, you will:

- Use interval notation.
- Use properties of inequalities.
- Solve inequalities in one variable algebraically.
- Solve absolute value inequalities.

USING INTERVAL NOTATION

- Indicating solutions to an inequality can be achieved in several ways, such as number line, set-builder notation, and interval notation. Interval notation is when solution sets are indicated with
- Please fill out the table below.

Set Indicated	Set-Builder Notation	Interval Notation
All numbers between <i>a</i> and <i>b</i> ,		
but not including <i>a</i> or <i>b</i> .		
All numbers greater than <i>a</i> ,		
but not including <i>a</i> .		
All numbers less than <i>b</i> ,		
but not including <i>b</i> .		
All numbers greater than <i>a</i> ,		
including <i>a</i> .		
All numbers less than <i>b</i> ,		
including b.		
All real numbers between		
a and b, including a.		
All real numbers between		
a and b, including b.		
All real numbers between a and b ,		
including <i>a</i> and <i>b</i> .		
All real numbers less than <i>a</i>		
or greater than <i>b</i> .		
All real numbers.		

Try It: Read Example 1 in the text, then answer the following.

Use interval notation to indicate all real numbers between and including -3 and 5.

Try It: Read Example 2 in the text, then answer the following.

Express all real numbers less than -2 or greater than or equal to 3 in interval notation.

USING THE PROPERTIES OF INEQUALITIES

Study the box in your textbook section titled "properties of inequalities."

• Given a < b, please fill out the following properties.

Addition Property: If a < b, then _____.

Multiplication Property: If a < b and _____, then _____.

If a < b and _____, then _____.

• Remember that these properties also apply to $a \le b$, a > b, and $a \ge b$.

Try It: Read Example 3 in the text, then answer the following.

Solve: 3x - 2 < 1.

Try It: Read Example 4 in the text, then answer the following.

Solve: $4x + 7 \ge 2x - 3$

Homework: You should now be ready to attempt problems 1-3 in "Homework – Section 2.7" on WeBWorK.

SOLVING INEQUALITIES IN ONE VARIABLE ALGEBRAICALLY

Try It: Read Example 5 in the text, then answer the following.

Solve the inequality and write the answer using interval notation: $-x + 4 < \frac{1}{2}x + 1$.

Try It: Read Example 6 in the text, then answer the following.

Solve the inequality and write the answer in interval notation: $-\frac{5}{6}x \le \frac{3}{4} + \frac{8}{3}x$.

Homework: You should now be ready to attempt problems 4-6 in "Homework – Section 2.7" on WeBWorK.

UNDERSTANDING COMPOUND INEQUALITIES

• A _____ includes two inequalities in one statement. There are two ways to solve compound inequalities. List the two ways below.

1.

2.

Try It: Read Example 7 in the text, then answer the following.

Solve the compound inequality: $4 < 2x - 8 \le 10$.

Try It: Read Example 8 in the text, then answer the following.

Solve the compound inequality: 3y < 4 - 5y < 5 + 3y.

SOLVING ABSOLUTE VALUE INEQUALITIES

Study the box in your textbook section titled "absolute value inequalities."

• Given an algebraic expression X, and k > 0, an absolute value inequality is an inequality of the form

|X| < k is equivalent to _____

|X| > k is equivalent to _____

*Remember these statements also apply to $|X| \le k$ and $|X| \ge k$.

Try It: Read Example 9 in the text, then answer the following.

Describe all x-values within a distance of 3 from the number 2.

Homework: You should now be ready to attempt problems 7-9 in "Homework – Section 2.7" on WeBWorK.

Try It: Read Example 10 in the text, then answer the following.

Solve $|x - 4| \leq 10$.

Homework: You should now be ready to attempt problems 10-15 in "Homework – Section 2.7" on WeBWorK.