GUIDED NOTES – 3.4 COMPOSITION OF FUNCTIONS

LEARNING OBJECTIVES

In this section, you will:

- Combine functions using algebraic operations.
- Create a new function by composition of functions.
- Evaluate composite functions.
- Find the domain of a composite function.
- Decompose a composite function into its component functions.

COMBINING FUNCTIONS USING ALGEBRAIC OPERATIONS

- For two functions f(x) and g(x) with real number outputs, we define new functions f + g, f g, fg, and $\frac{f}{g}$ by the relations:
 - (f+g)(x) = _____
 - (f g)(x) = _____
 - (fg)(x) = ______
 - $\left(\frac{f}{g}\right)(x) =$ _____, where $g(x) \neq 0$

Try It: Read Example 1 in the text, then answer the following.

Find and simplify the functions (fg)(x) and (f - g)(x).

$$f(x) = x - 1$$
 and $g(x) = x^2 - 1$

Are they the same function?

Homework: You should now be ready to attempt problems 1-3 in "Homework – Section 3.4" on WeBWorK.

CREATE A FUNCTION BY COMPOSITION OF FUNCTIONS

Study the box in your textbook section titled "composition of functions."

When the output of one function is used as the input of another, we call the entire operation a
_______. For any input *x* and functions *f* and *g*, this action defines a composite
function, which we write as *f* • *g* such that
______.

* Remember that the product of fg is NOT the same as the function composition f(g(x)), because, in general, $(fg)(x) \neq f(g(x))$.

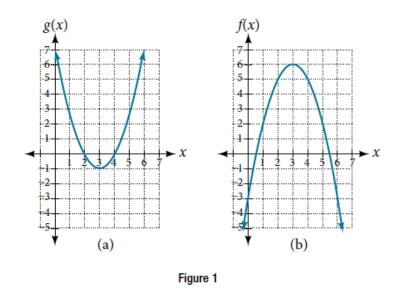
Try It: Read Example 2 in the text, then answer the following.

Using the functions provided, find f(g(x)) and g(f(x)). Determine whether the composition of the functions is *commutative*.

$$f(x) = x^2 + 3$$
 $g(x) = \frac{1}{x}$

Homework: You should now be ready to attempt problem 7 in "Homework – Section 3.3" on WeBWorK.

EVALUATING COMPOSITE FUNCTIONS


Try It: Read Example 5 in the text, then answer the following.

Using **Table 1**, evaluate f(g(1)) and g(f(4)).

x	f(x)	g(x)
1	6	3
2	8	5
3	3	2
4	1	7
Table 1		

- Write out the 4-step process for evaluating composite functions, given a composite function and graphs of its individual functions.
 - 1. 2.
 - 3.
 - 4.
 - *Try It:* Read Example 6 in the text, then answer the following.

Using **Figure 1**, evaluate g(f(2)).

- Write out the 2-step process for evaluating a function, given a formula for a composite function.
 - 1.
 - 2.

Try It: Read Example 7 in the text, then answer the following.

Given $f(t) = t^2 - t$ and h(x) = 3x + 2, evaluate

a. h(f(2))

b. h(f(-2))

Homework: You should now be ready to attempt problems 4-6 in "Homework – Section 3.3" on WeBWorK.

FINDING THE DOMAIN OF A COMPOSITE FUNCTION

- Write out the 3-step process for determining the domain, given a function composition f(g(x)).
 - 1.
 - 2.
 - 3.

Try It: Read Examples 8 and 9 in the text, then answer the following.

Find the domain of $(f \circ g)(x)$ where $f(x) = \frac{1}{x-2}$ and $g(x) = \sqrt{x+4}$

Homework: You should now be ready to attempt problem 11 in "Homework – Section 3.3" on WeBWorK.

DECOMPOSING A COMPOSITE FUNCTION INTO ITS COMPONENT FUNCTIONS

Try It: Read Example 10 in the text, then answer the following.

Write $f(x) = \frac{4}{3-\sqrt{4+x^2}}$ as the composition of two functions.

Homework: You should now be ready to attempt problems 12-13 in "Homework – Section 3.3" on WeBWorK.