# **GUIDED NOTES – 3.7 INVERSE FUNCTIONS**

### **LEARNING OBJECTIVES**

In this section, you will:

- Verify inverse functions.
- Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.
- Find or evaluate the inverse of a function.
- Use the graph of a one-to-one function to graph its inverse function on the same axis.

# VERIFYING THAT TWO FUNCTIONS ARE INVERSE FUNCTIONS

Study the box in your textbook section titled "inverse function."

• For any one-to-one function f(x) = y, a function  $f^{-1}(x)$  is an \_\_\_\_\_ of f if

. This can also be written as \_\_\_\_\_\_ for all x in the domain of f.

\* Remember that  $f^{-1}(x) \neq \frac{1}{f(x)}$ .

Try It: Read Example 1 in the text, then answer the following.

Given that  $h^{-1}(6) = 2$ , what are the corresponding input and output values of the original function *h*?

- Write out the 2 step process for testing whether the functions are inverses of each other, given two functions f(x) and g(x).
  - 1.

Try It: Read Example 2 in the text, then answer the following.

If 
$$f(x) = x^3 - 4$$
 and  $g(x) = \sqrt[3]{x+4}$ , is  $g = f^{-1}$ ?

Try It: Read Example 3 in the text, then answer the following.

If 
$$f(x) = (x - 1)^3$$
 and  $g(x) = \sqrt[3]{x} + 1$ , is  $g = f^{-1}$ ?

#### FINDING THE DOMAIN AND RANGE OF INVERSE FUNCTIONS

• When a function has no inverse function, it is possible to create a new function where that new function on a

\_\_\_\_\_ does have an inverse function.

Study the box in your textbook section titled "domain and range of inverse functions."

- The range of a function f(x) is the \_\_\_\_\_ of the inverse function  $f^{-1}(x)$ .
- The \_\_\_\_\_ of a function f(x) is the range of the inverse function  $f^{-1}(x)$ .
- Write out the 2 step process for finding the domain and range of its inverse, given a function.
  - 1.

*Try It:* Read Example 4 in the text, then answer the following.

The domain of function f is  $(1, \infty)$  and the range of the function f is  $(-\infty, -2)$ . Find the domain and range of the inverse function.

## FINDING AND EVALUATING INVERSE FUNCTIONS

*Try It:* Read Example 5 in the text, then answer the following.

Using **Table 4**, find and interpret **a**. f(60) and **b**.  $f^{-1}(60)$ .

| t (minutes)  | 30 | 50 | 60 | 70 | 90 |
|--------------|----|----|----|----|----|
| f(t) (miles) | 20 | 40 | 50 | 60 | 70 |

Table 4

• Write out the 2 step process for evaluating its inverse at specific points, given the graph of a function.

2.

*Try It:* Read Example 6 in the text, then answer the following.

Using the graph in **Figure 5**, **a.** find  $g^{-1}(1)$ , and **b.**  $g^{-1}(4)$ .



Homework: You should now be ready to attempt problems 1-4 in "Homework – Section 3.7" on WeBWorK.

• Write out the 3 step process for finding the inverse, given a function represented by a formula.

1.

2.

3.

*Try It:* Read Example 7 in the text, then answer the following.

Solve for x in terms of y given  $y = \frac{1}{3}(x-5)$ 

*Try It:* Read Examples 8 and 9 in the text, then answer the following.

What is the inverse of the function  $f(x) = 2 - \sqrt{x}$ ? State the domains of both the function and the inverse function.

Homework: You should now be ready to attempt problems 7-8 in "Homework – Section 3.7" on WeBWorK.

### FINDING INVERSE FUNCTIONS AND THEIR GRAPHS

• What is the distinct relationship that we observe between the graphs of functions and their inverses for all one-to-one functions?