
GUIDED NOTES - 5.6 RATIONAL FUNCTIONS

LEARNING OBJECTIVES

In this section, you will:

- Use arrow notation.
- Solve applied problems involving rational functions.
- Find the domains of rational functions.
- Identify vertical asymptotes.
- Identify horizontal asymptotes.
- Graph rational functions.

USING ARROW NOTATION

Symbol	Meaning
$x \rightarrow a^+$	x approaches a from the $(x _ a \text{ but close to } a)$
$x \rightarrow a^{-}$	x approaches a from the $(x _ a \text{ but close to } a)$
$\chi \to \infty$	<i>x</i> approaches (<i>x</i> without bound)
$x \to -\infty$	<i>x</i> approaches (<i>x</i> without bound)
$f(x) \to \infty$	The output approaches (The output without bound)
$f(x) \to -\infty$	The output approaches (The output without bound)
$f(x) \rightarrow a$	The output approaches

Study the box in your textbook section titled "vertical asymptote."

- A ______ asymptote of a graph is a vertical line *x* = _____ where the graph tends towards positive or negative infinity as the inputs approach *a*.
- How would you write this using arrow notation?

Study the box in your textbook section titled "horizontal asymptote."

- A ______ asymptote of a graph is a horizontal line *y* = _____ where the graph approaches the line as the inputs increase or decrease without bound.
- How would you write this using arrow notation?
- A rational function is a function that can be written as the ______ of two polynomial functions.

FINDING THE DOMAINS OF RATIONAL FUNCTIONS

Study the box in your textbook section titled "domain of a rational function."

• The domain of a rational function includes all real numbers except those that cause the denominator to equal

- 2.
- 3.

[•] Write out the 3 step process for finding the domain, given a rational function.

^{1.}

Try It: Read Example 4 in the text, then answer the following.

Find the domain of $f(x) = \frac{4x}{5(x-1)(x-5)}$.

IDENTIFYING VERTICAL ASYMPTOTES OF RATIONAL FUNCTIONS

- Write out the 5 step process for identifying any vertical asymptotes of the graph, given a rational function.
 - 1.
 - 2.
 3.
 4.
 5.

Study the box in your textbook section titled "removable discontinuities of rational functions."

• When does a *removable discontinuity* occur?

Try It: Read Examples 5 and 6 in the text, then answer the following.

Find the vertical asymptote and removable discontinuities of the graph $f(x) = \frac{x^2 - 25}{x^3 - 6x^2 + 5x}$.

IDENTIFYING HORIZONTAL ASYMPTOTES OF RATIONAL FUNCTIONS

Study the box in your textbook section titled "horizontal asymptotes of rational functions."

Degree of numerator is ______ degree of denominator, then there is a horizontal asymptote at ______.
Degree of numerator is ______ degree of denominator by one, then there is no horizontal asymptote, but there is a ______ asymptote.
Degree of numerator is ______ degree of denominator, then there is a horizontal asymptote at ______.

Try It: Read Examples 7, 8, and 9 in the text, then answer the following.

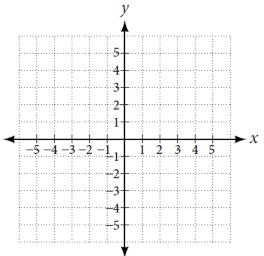
Find the vertical and horizontal asymptotes of the function $f(x) = \frac{(2x-1)(2x+1)}{(x-2)(x+3)}$.

Homework: You should now be ready to attempt problems 1-4 in "Homework – Section 5.6" on WeBWorK. Study the box in your textbook section titled "intercepts of rational functions."

- A rational function will have a *y*-intercept when the ______ is zero, if the function is defined at zero.
- When will a rational function not have a *y*-intercept?

• A rational function will have *x*-intercepts at the inputs that cause the output to be ______. Remember,

x-intercepts can only occur when the ______ of the rational function equals zero.


Homework: You should now be ready to attempt problem 5 in "Homework – Section 5.6" on WeBWorK.

GRAPHING RATIONAL FUNCTIONS

- Write out the 8 step process for sketching a graph, given a rational function.
 - 1.
 - 2.
 3.
 4.
 5.
 6.
 7.
 - 8.

Try It: Read Example 11 in the text, then answer the following.

Given the function $f(x) = \frac{(x+2)^2(x-2)}{2(x-1)^2(x-3)}$, use the characteristics of polynomials and rational functions to describe its behavior and sketch the function.

WRITING RATIONAL FUNCTIONS

• Write out the 3 step process for writing a rational equation, given a graph of a rational function.

1.

2.

3.