GUIDED NOTES - 6.1 EXPONENTIAL FUNCTIONS

LEARNING OBJECTIVES

In this section, you will:

- Evaluate exponential functions.
- Find the equation of an exponential function.
- Use compound interest formulas.
- Evaluate exponential functions with base *e*.

IDENTIFYING EXPONENTIAL FUNCTIONS

Study the box in your textbook section titled "exponential function."

• For any real number *x*, an exponential function is a function with the form

f(x) =_____

- *a* is known as the _____
- *b* is a positive real number such that *b* ____1
- The domain of *f* is _____
- The range of *f* is all positive numbers if *a* _____0 or all negative numbers if *a* _____0
- The y-intercept is _____, and the horizontal asymptote is y = _____

Try It: Read Example 1 in the text, then answer the following.

Which of the following equations represent exponential functions?

- **a.** $f(x) = 2x^2 3x + 1$
- **b.** $g(x) = 0.875^x$
- c. h(x) = 1.75x + 2
- **d.** $j(x) = 1095.6^{-2x}$

Homework: You should now be ready to attempt problem 1 in "Homework – Section 6.1" on WeBWorK. © UTSA Math Matters 2017

EVALUATING EXPONENTIAL FUNCTIONS

Try It: Read Example 2 in the text, then answer the following.

Let $f(x) = 8(1.2)^{x-5}$. Evaluate f(3) using a calculator. Round to four decimal places.

Study the box in your textbook section titled "exponential growth."

• For any real number x and any positive real numbers a and b such that $b \neq 1$, an exponential growth function has the form

f(x) =_____, where

 a is the ______ or _____ value of the function

 b is the growth ______ or growth ______ per unit x

Try It: Read Example 3 in the text, then answer the following.

The population of China was about 1.39 billion in the year 2013, with an annual growth rate of about 0.6%. This situation is represented by the growth function $P(t) = 1.39(1.006)^t$, where t is the number of years since 2013. To the nearest thousandth, what will the population of China be for the year 2031?

FINDING EQUATIONS OF EXPONENTIAL FUNCTIONS

- Write out the 3 step process for writing an exponential model, given two data points.
 - 1.
 - 2.
 - 3.

Try It: Read Example 5 in the text, then answer the following.

Given the two points (1,3) and (2, 4.5), find the equation of the exponential function that passes through these two points.

Homework: You should now be ready to attempt problems 6-7 in "Homework – Section 6.1" on WeBWorK.

- Write out the 4 step process for writing the equation, given the graph of an exponential function.
 - 1. 2. 3. 4.

APPLYING THE COMPOUND-INTEREST FORMULA

Study the box in your textbook section titled "the compound interest formula."

• Write the formula that is used to calculate compound interest below.

A	A(t) =
A(t) is the	
t is measured in	
<i>P</i> is the starting amount, often called	or
r is the	rate (APR) expressed as a decimal
<i>n</i> is the number of	periods in one year.

Try It: Read Example 8 in the text, then answer the following.

An initial investment of \$100,000 at 12% interest is compounded weekly (use 52 weeks in a year). What will the investment be worth in 30 years?

EVALUATING FUNCTIONS WITH BASE *e*

Study the box in your textbook section titled "the number e."

• Write the irrational number that the letter *e* represents.

_____, as *n* increases without bound

• The approximation of *e* is $e \approx$ _____.

Try It: Read Example 10 in the text, then answer the following.

Use a calculator to find $e^{0.5}$. Round to five decimal places.

INVESTIGATING CONTINUOUS GROWTH

Study the box in your textbook section titled "the continuous growth/decay formula."

• For all real numbers *t*, and all positive numbers *a* and *r*, continuous growth or decay is represented by the formula

A(t) =____, where

a is the _____ value

r is the _____ growth rate per unit time

t is the _____

When does the formula represent growth and when does it represent decay?

For business applications, the continuous growth formula is called the

formula and takes the form

Homework: You should now be ready to attempt problems 2-5 in "Homework – Section 6.1" on WeBWorK.

- Write out the 4 step process for solving a continuous growth or decay function, given the initial value, rate of growth or decay, and time, *t*.
 - 1. 2. a. b. 3. 4.

Try It: Read Example 11 in the text, then answer the following.

A person invests \$100,000 at a nominal 12% interest per year compounded continuously. What will be the value of the investment in 30 years?