GUIDED NOTES – 6.6 EXPONENTIAL AND LOGARITHMIC EQUATIONS

LEARNING OBJECTIVES

In this section, you will:

- Use like bases to solve exponential equations.
- Use logarithms to solve exponential equations.
- Use the definition of a logarithm to solve logarithmic equations.
- Use the one-to-one property of logarithms to solve logarithmic equations.
- Solve applied problems involving exponential and logarithmic equations.

USING LIKE BASES TO SOLVE EXPONENTIAL EQUATIONS

•	Write out the 3 step process for solving for an unknown, given an exponential equation with the form $b^S = b^T$, where S and T are algebraic expressions with an unknown.
	1.

2.

3.

Try It: Read Example 1 in the text, then answer the following.

Solve
$$5^{2x} = 5^{3x+2}$$

Homework: You should now be ready to attempt problem 1 in "Homework – Section 6.6" on WeBWorK.

• Write out the 4 step process for using the one-to-one property to solve it, given an exponential equation with unlike bases.

1.

2.

3.

4.

Try It: Read Example 4 in the text, then answer the following.

Solve $2^x = -100$.

Solve $5^x = \sqrt{5}$.

Homework: You should now be ready to attempt problems 4-6 in "Homework – Section 6.6" on WeBWorK.

SOLVING EXPONENTIAL EQUATIONS USING LOGARITHMS

- Write out the 2 step process for solving for an unknown, given an exponential equation in which a common base cannot be found.
 - 1.
- a.
- b.
- 2.
- Write out the 3 step process for solving for t, given an equation if the form $y = Ae^{kt}$.
 - 1.
 - 2.
 - 3.

Try It: Read Example 6 in the text, then answer the following.

Solve $3e^{0.5t} = 11$.

USING THE DEFINITION OF A LOGARITHM TO SOLVE LOGARITHMIC EQUATIONS

Study the box in your textbook section titled "using the definition of a logarithm to solve logarithmic equations."

• For any algebraic expression S and real numbers b and c, where b > 0, $b \ne 1$,

$$\log_b(S) =$$
___ if and only if $b^c =$ ___

Try It: Read Example 10 in the text, then answer the following.

Solve
$$2 \ln(x + 1) = 10$$
.

Homework: You should now be ready to attempt problem 10 in "Homework – Section 6.6" on WeBWorK.

USING THE ONE-TO-ONE PROPERTY OF LOGARITHMS TO SOLVE LOGARITHMIC EQUATIONS

Study the box in your textbook section titled "using the one-to-one property of logarithms to solve logarithmic equations".

• For any algebraic expression S and any positive real number b, where $b \neq 1$,

$$\log_b(S) =$$
_____ if and only if $S =$ _____

- Write out the 3 step process for solving an equation using the one-to-one property, given an equation containing logarithms.
 - 1.
 - 2.
 - 3.

Try It: Read Example 12 in the text, then answer the following.

Solve
$$ln(x^2) = ln(1)$$
.