GUIDED NOTES - 1.2 EXPONENTS AND SCIENTIFIC NOTATION

LEARNING OBJECTIVES

In this section, you will:

- Use the product rule of exponents.
- Use the quotient rule of exponents.
- Use the power rule of exponents.
- Use the zero exponent rule of exponents.
- Use the negative rule of exponents.
- Find the power of a product and a quotient.
- Simplify exponential expressions.

USING THE PRODUCT RULE OF EXPONENTS

Study the box in your textbook section titled "the product rule of exponents."

• For any real number *a* and natural numbers *m* and *n*, the product rule of exponents states that

 $a^m \cdot a^n =$ _____

Try It: Read Example 1 in the text, then answer the following.

Write each of the following products with a single base. Do not simplify further.

a.
$$k^6 \cdot k^9$$
 b. $t^3 \cdot t^6 \cdot t^5$

USING THE QUOTIENT RULE OF EXPONENTS

Study the box in your textbook section titled "the quotient rule of exponents."

• For any real number *a* and natural numbers *m* and *n*, such that *m* > *n*, the quotient rule of exponents states that

$$\frac{a^m}{a^n} =$$

Try It: Read Example 2 in the text, then answer the following.

Write each of the following expressions with a single base.

a.
$$\frac{s^{75}}{s^{68}}$$
 b. $\frac{x^5 \cdot x^4}{x^3}$

USING THE POWER RULE OF EXPONENTS

Study the box in your textbook section titled "the power rule of exponents."

• For any real number *a* and positive integers *m* and *n*, the power rule of exponents states that

 $(a^m)^n =$ _____

Try It: Read Example 3 in the text, then answer the following.

Write each of the following products with a single base.

a.
$$(t^5)^7$$
 b. $((y^3)^2)^5$

USING THE ZERO EXPONENT RULE OF EXPONENTS

Study the box in your textbook section titled "the zero exponent rule of exponents."

• For any nonzero real number a, the zero exponent rule of exponents states that

*a*⁰ = _____

USING THE NEGATIVE RULE OF EXPONENTS

Study the box in your textbook section titled "the negative rule of exponents."

• For any nonzero real number *a* and natural number *n*, the negative rule of exponents states that

 $a^{-n} =$ _____

Try It: Read Examples 5 and 6 in the text, then answer the following.

Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.

a.
$$\frac{f^{47}}{f^{49} \cdot f}$$
 b. $t^{-11} \cdot t^6$

Homework: You should now be ready to attempt problems 1-3 in "Homework – Algebra 1.2" on WeBWorK.

© UTSA Math Matters 2017

FINDING THE POWER OF A PRODUCT

Study the box in your textbook section titled "the power of a product rule of exponents."

• For any nonzero real numbers *a* and *b* and natural number *n*, the power of a product rule of exponents states that

 $(ab)^n =$

Try It: Read Example 7 in the text, then answer the following.

Simplify each of the following products as much as possible using the power of a product rule. Write answers with positive exponents.

a. $(g^2h^3)^5$ **b.** $(-3y^5)^3$ **c.** $(r^3s^{-2})^4$

Homework: You should now be ready to attempt problems 4-9 in "Homework – Algebra 1.2" on WeBWorK. <u>REVIEW QUESTIONS</u>

Answer the following questions in your own words.

1. Is 2^3 the same as 3^2 ? Explain.

2. When can you add two exponents?

3. Explain what a negative exponent does.