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Figure 1  35-mm film, once the standard for capturing photographic images, has been made largely obsolete by digital photography. 
(credit “film”: modification of work by Horia Varlan; credit “memory cards”: modification of work by Paul Hudson)
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Introduction
Digital photography has dramatically changed the nature of photography. No longer is an image etched in the emulsion 
on a roll of film. Instead, nearly every aspect of recording and manipulating images is now governed by mathematics. 
An image becomes a series of numbers, representing the characteristics of light striking an image sensor. When we 
open an image file, software on a camera or computer interprets the numbers and converts them to a visual image. 
Photo editing software uses complex polynomials to transform images, allowing us to manipulate the image in order 
to crop details, change the color palette, and add special effects. Inverse functions make it possible to convert from one 
file format to another. In this chapter, we will learn about these concepts and discover how mathematics can be used 
in such applications.
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Learning Objectives

In this section, you will:

•	 Evaluate a polynomial using the Remainder Theorem.

•	 Use the Factor Theorem to solve a polynomial equation.

•	 Use the Rational Zero Theorem to find rational zeros.

•	 Find zeros of a polynomial function.

•	 Use the Linear Factorization Theorem to find polynomials with given zeros.

•	 Use Decartes' Rule of Signs.

•	 Solve real-world applications of polynomial equations.

3.6  Zeros of Polynomial Functions

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The bakery wants 
the volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want the length 
of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. 
What should the dimensions of the cake pan be?

This problem can be solved by writing a cubic function and solving a cubic equation for the volume of the cake. In 
this section, we will discuss a variety of tools for writing polynomial functions and solving polynomial equations.

Evaluating a Polynomial Using the Remainder Theorem
In the last section, we learned how to divide polynomials. We can now use polynomial division to evaluate polynomials 
using the Remainder Theorem. If the polynomial is divided by x − k, the remainder may be found quickly by 
evaluating the polynomial function at k, that is, f (k) Let’s walk through the proof of the theorem.

Recall that the Division Algorithm states that, given a polynomial dividend f (x) and a non-zero polynomial divisor d(x) 
where the degree of d(x) is less than or equal to the degree of f (x), there exist unique polynomials q(x) and r(x) such that

	 f (x) = d(x)q(x) + r(x)

If the divisor, d(x), is x − k, this takes the form

f (x) = (x − k)q(x) + r

Since the divisor x − k is linear, the remainder will be a constant, r. And, if we evaluate this for x = k, we have

	 f (k) = (k − k)q(k) + r

	 = 0 ⋅ q(k) + r

	 = r

In other words, f (k) is the remainder obtained by dividing f (x) by x − k.

the Remainder Theorem 
If a polynomial f (x) is divided by x − k, then the remainder is the value f (k).

How To…
Given a polynomial function f, evaluate f (x) at x = k using the Remainder Theorem.

1.  Use synthetic division to divide the polynomial by x − k.
2.  The remainder is the value f (k).
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Example  1	 Using the Remainder Theorem to Evaluate a Polynomial

Use the Remainder Theorem to evaluate f (x) = 6x4 − x3 − 15x2 + 2x − 7 at x = 2.

Solution	 To find the remainder using the Remainder Theorem, use synthetic division to divide the polynomial by 
x − 2.

2 6 −1 −15   2 −7
12   22 14 32

6 11   7 16 25

The remainder is 25. Therefore, f (2) = 25.

Analysi s	 We can check our answer by evaluating f (2).

	 f (x) = 6x4 − x3 − 15x2 + 2x − 7

	 f (2) = 6(2)4 − (2)3 − 15(2)2 + 2(2) − 7

	 = 25

Try It #1

Use the Remainder Theorem to evaluate f (x) = 2x5 − 3x4 − 9x3 + 8x2 + 2 at x = −3.

Using the Factor Theorem to Solve a Polynomial Equation
The Factor Theorem is another theorem that helps us analyze polynomial equations. It tells us how the zeros of a 
polynomial are related to the factors. Recall that the Division Algorithm tells us

f (x) = (x − k)q(x) + r.

If k is a zero, then the remainder r is f (k) = 0 and f (x) = (x − k)q(x) + 0 or f (x) = (x − k)q(x).

Notice, written in this form, x − k is a factor of f (x). We can conclude if k is a zero of f (x), then x − k is a factor of f (x).

Similarly, if x − k is a factor of f (x), then the remainder of the Division Algorithm f (x) = (x − k)q(x) + r is 0. This 
tells us that k is a zero.

This pair of implications is the Factor Theorem. As we will soon see, a polynomial of degree n in the complex number 
system will have n zeros. We can use the Factor Theorem to completely factor a polynomial into the product of n factors. 
Once the polynomial has been completely factored, we can easily determine the zeros of the polynomial.

the Factor Theorem 
According to the Factor Theorem, k is a zero of f (x) if and only if (x − k) is a factor of f (x).

How To…
Given a factor and a third-degree polynomial, use the Factor Theorem to factor the polynomial.

1.  Use synthetic division to divide the polynomial by (x − k).
2.  Confirm that the remainder is 0.
3.  Write the polynomial as the product of (x − k) and the quadratic quotient.
4.  If possible, factor the quadratic.
5.  Write the polynomial as the product of factors.

Example  2	 Using the Factor Theorem to Solve a Polynomial Equation

Show that (x + 2) is a factor of x3 − 6x2 − x + 30. Find the remaining factors. Use the factors to determine the zeros 
of the polynomial.
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Solution	 We can use synthetic division to show that (x + 2) is a factor of the polynomial.

−2 1 −6 −1   30

−2 16 −30

1 −8 15   0

The remainder is zero, so (x + 2) is a factor of the polynomial. We can use the Division Algorithm to write the 
polynomial as the product of the divisor and the quotient:

(x + 2)(x2 − 8x + 15)

We can factor the quadratic factor to write the polynomial as

(x + 2)(x − 3)(x − 5)

By the Factor Theorem, the zeros of x3 − 6x2 − x + 30 are −2, 3, and 5.

Try It #2

Use the Factor Theorem to find the zeros of f (x) = x3 + 4x2 − 4x − 16 given that (x − 2) is a factor of the polynomial.

Using the Rational Zero Theorem to Find Rational Zeros

Another use for the Remainder Theorem is to test whether a rational number is a zero for a given polynomial. But 
first we need a pool of rational numbers to test. The Rational Zero Theorem helps us to narrow down the number of 
possible rational zeros using the ratio of the factors of the constant term and factors of the leading coefficient of the 
polynomial. 

Consider a quadratic function with two zeros, x = ​ 2 __ 5 ​ and x = ​ 3 __ 4 ​. By the Factor Theorem, these zeros have factors 
associated with them. Let us set each factor equal to 0, and then construct the original quadratic function absent its 
stretching factor.

	 x − ​ 2 __ 5 ​ = 0 or x − ​ 3 __ 4 ​ = 0	 Set each factor equal to 0.

	 5x − 2 = 0 or 4x − 3 = 0	� Multiply both sides of the equation to eliminate fractions.

	 f (x) = (5x − 2)(4x − 3)	� Create the quadratic function, multiplying the factors.

	 f (x) = 20x2 − 23x + 6	 Expand the polynomial. 

	 f (x) = (5 ⋅ 4)x2 − 23x + (2 ⋅ 3)

Notice that two of the factors of the constant term, 6, are the two numerators from the original rational roots: 2 
and 3. Similarly, two of the factors from the leading coefficient, 20, are the two denominators from the original 
rational roots: 5 and 4.

We can infer that the numerators of the rational roots will always be factors of the constant term and the denominators 
will be factors of the leading coefficient. This is the essence of the Rational Zero Theorem; it is a means to give us a 
pool of possible rational zeros.

the Rational Zero Theorem 
The Rational Zero Theorem states that, if the polynomial f (x) = anxn + an − 1 x

n − 1 + ... + a1 x + a0 has integer 
coefficients, then every rational zero of f (x) has the form ​ 

p
 _ q ​ where p is a factor of the constant term a0 and q is a 

factor of the leading coefficient an.

When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.
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How To…
Given a polynomial function f (x), use the Rational Zero Theorem to find rational zeros.

1.  Determine all factors of the constant term and all factors of the leading coefficient.

2.  Determine all possible values of ​ 
p

 _ q ​, where p is a factor of the constant term and q is a factor of the leading coefficient. 
Be sure to include both positive and negative candidates.

3.  Determine which possible zeros are actual zeros by evaluating each case of f ​ ​ 
p

 _ q ​ ​.

Example  3	 Listing All Possible Rational Zeros

List all possible rational zeros of f (x) = 2x4 − 5x3 + x2 − 4.

Solution	 The only possible rational zeros of f (x) are the quotients of the factors of the last term, −4, and the factors 
of the leading coefficient, 2.

The constant term is −4; the factors of −4 are p = ±1, ±2, ±4.

The leading coefficient is 2; the factors of 2 are q = ±1, ±2.

If any of the four real zeros are rational zeros, then they will be of one of the following factors of −4 divided by one 
of the factors of 2.

	​ 
p

 _ q ​ = ±​ 1 __ 1 ​, ±​ 1 __ 2 ​ ​ 
p

 _ q ​ = ±​ 2 __ 1 ​, ±​ 2 __ 2 ​ ​ 
p

 _ q ​ = ±​ 4 __ 1 ​, ±​ 4 __ 2 ​

Note that ​ 2 __ 2 ​ = 1 and ​ 4 __ 2 ​ = 2, which have already been listed. So we can shorten our list.

	​ 
p

 _ q ​ = ​ Factors of the last  __  
Factors of the first

 ​ = ±1, ±2, ±4, ±​ 1 __ 2 ​

Example  4	 Using the Rational Zero Theorem to Find Rational Zeros

Use the Rational Zero Theorem to find the rational zeros of f (x) = 2x3 + x2 − 4x + 1.

Solution	  The Rational Zero Theorem tells us that if ​ 
p

 _ q ​ is a zero of f (x), then p is a factor of 1 and q is a factor of 2.

	 ​ 
p

 _ q ​ = ​  factor of constant term  ___   
factor of leading coefficient

 ​

	 = ​ factor of 1 _ 
factor of 2

 ​

The factors of 1 are ±1 and the factors of 2 are ±1 and ±2. The possible values for ​ 
p

 _ q ​ are ±1 and ±​ 1 _ 2 ​. These are the 
possible rational zeros for the function. We can determine which of the possible zeros are actual zeros by substituting 
these values for x in f (x).

	 f (−1) = 2(−1)3 + (−1)2 − 4(−1) + 1 = 4

	 f (1) = 2(1)3 + (1)2 − 4(1) + 1 = 0

	 f  ​ −​ 1 __ 2 ​ ​ = 2 ​ −​ 1 __ 2 ​ ​
3
 + ​ −​ 1 __ 2 ​ ​

2
 − 4 ​ −​ 1 __ 2 ​ ​ + 1 = 3

	 f  ​ ​ 1 __ 2 ​ ​ = 2 ​ ​ 1 __ 2 ​ ​
3
 + ​ ​ 1 __ 2 ​ ​

2
 − 4 ​ ​ 1 __ 2 ​ ​ + 1 = −​ 1 _ 

2
 ​

Of those, −1, −​ 1 __ 
2

 ​, and ​ 1 __ 2 ​ are not zeros of f (x). 1 is the only rational zero of f (x).

Try It #3
Use the Rational Zero Theorem to find the rational zeros of f (x) = x3 − 5x2 + 2x + 1.
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Finding the Zeros of Polynomial Functions
The Rational Zero Theorem helps us to narrow down the list of possible rational zeros for a polynomial function. Once 
we have done this, we can use synthetic division repeatedly to determine all of the zeros of a polynomial function.

How To…
Given a polynomial function f, use synthetic division to find its zeros.

1.  Use the Rational Zero Theorem to list all possible rational zeros of the function.
2.  Use synthetic division to evaluate a given possible zero by synthetically dividing the candidate into the polynomial. 

If the remainder is 0, the candidate is a zero. If the remainder is not zero, discard the candidate.
3.  Repeat step two using the quotient found with synthetic division. If possible, continue until the quotient is a 

quadratic.
4.  Find the zeros of the quadratic function. Two possible methods for solving quadratics are factoring and using the 

quadratic formula.

Example  5	� Finding the Zeros of a Polynomial Function with Repeated Real Zeros

Find the zeros of f (x) = 4x3 − 3x − 1.
Solution	 The Rational Zero Theorem tells us that if ​ 

p
 _ q ​ is a zero of f (x), then p is a factor of −1 and q is a factor of 4.

	​ 
p

 _ q ​ = ​  factor of constant term  ___   
factor of leading coefficient

 ​

	 = ​ factor of −1 __ 
factor of 4

 ​

The factors of −1 are ±1 and the factors of 4 are ±1, ±2, and ±4. The possible values for ​ 
p

 _ q ​ are ±1, ±​ 1 __ 2 ​, and ±​ 1 __ 4 ​. These 
are the possible rational zeros for the function. We will use synthetic division to evaluate each possible zero until we 
find one that gives a remainder of 0. Let’s begin with 1.

1 4 0 −3 −1
4 4 1

4 4 1 0
Dividing by (x − 1) gives a remainder of 0, so 1 is a zero of the function. The polynomial can be written as

(x − 1)(4x2 + 4x + 1).

The quadratic is a perfect square. f (x) can be written as

(x − 1)(2x + 1)2.

We already know that 1 is a zero. The other zero will have a multiplicity of 2 because the factor is squared. To find the 
other zero, we can set the factor equal to 0.
	 2x + 1 = 0
	 x = −​ 1 __ 2 ​

The zeros of the function are 1 and −​ 1 __ 2 ​ with multiplicity 2.

Analysis	 Look at the graph of the function f in Figure 1. Notice, at x = −0.5, the graph bounces off the x-axis, indicating 
the even multiplicity (2, 4, 6…) for the zero −0.5. At x = 1, the graph crosses the x-axis, indicating the odd multiplicity  
(1, 3, 5…) for the zero x = 1.

x

y

–0.5–1–1.5–2–2.5
–0.5

–1
–1.5

–2
–2.5

1.510.5

0.5
1

1.5

2 2.5

Cross

Bounce

Figure 1
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Using the Fundamental Theorem of Algebra
Now that we can find rational zeros for a polynomial function, we will look at a theorem that discusses the number 
of complex zeros of a polynomial function. The Fundamental Theorem of Algebra tells us that every polynomial 
function has at least one complex zero. This theorem forms the foundation for solving polynomial equations.

Suppose f is a polynomial function of degree four, and f (x) = 0. The Fundamental Theorem of Algebra states that 
there is at least one complex solution, call it c1. By the Factor Theorem, we can write f (x) as a product of x − c1 and 
a polynomial quotient. Since x − c1 is linear, the polynomial quotient will be of degree three. Now we apply the 
Fundamental Theorem of Algebra to the third-degree polynomial quotient. It will have at least one complex zero, call 
it c2. So we can write the polynomial quotient as a product of x − c2 and a new polynomial quotient of degree two. 
Continue to apply the Fundamental Theorem of Algebra until all of the zeros are found. There will be four of them 
and each one will yield a factor of f (x).

The Fundamental Theorem of Algebra 
The Fundamental Theorem of Algebra states that, if f (x) is a polynomial of degree n > 0, then f (x) has at least one 
complex zero. We can use this theorem to argue that, if f (x) is a polynomial of degree n > 0, and a is a non-zero 
real number, then f (x) has exactly n linear factors

f (x) = a(x − c1)(x − c2)...(x − cn)

where c1, c2, ..., cn are complex numbers. Therefore, f (x) has n roots if we allow for multiplicities.

Q & A…
Does every polynomial have at least one imaginary zero?
No. A complex number is not necessarily imaginary. Real numbers are also complex numbers.

Example  6	 Finding the Zeros of a Polynomial Function with Complex Zeros

Find the zeros of f (x) = 3x3 + 9x2 + x + 3.

Solution	 The Rational Zero Theorem tells us that if ​ 
p

 _ q ​ is a zero of f (x), then p is a factor of 3 and q is a factor of 3.

	​ 
p

 _ q ​ = ​  factor of constant term  ___   
factor of leading coefficient

 ​

	 = ​ factor of 3 _ 
factor of 3

 ​

The factors of 3 are ±1 and ±3. The possible values for ​ 
p

 _ q ​, and therefore the possible rational zeros for the function, are 
±3, ±1, and ±​ 1 __ 3 ​. We will use synthetic division to evaluate each possible zero until we find one that gives a remainder 
of 0. Let’s begin with −3.

−3 3   9 1   3

−9 0 −3
3   0 1   0

Dividing by (x + 3) gives a remainder of 0, so −3 is a zero of the function. The polynomial can be written as

(x + 3)(3x2 + 1)

We can then set the quadratic equal to 0 and solve to find the other zeros of the function.

	 3x2 + 1 = 0

	 x2 = −​ 1 __ 
3

 ​

	 x = ±​√ 
____

 −​ 1 __ 3 ​ ​ = ±​ i​√
—
 3 ​ _ 

3
 ​

The zeros of f (x) are −3 and ±​ i​√
—
 3 ​ _ 

3
 ​ .
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Analysi s	 Look at the graph of the function f in Figure 2. Notice that, at x = −3, the graph crosses the x-axis, indicating an 
odd multiplicity (1) for the zero x = −3. Also note the presence of the two turning points. This means that, since there is a 
3rd degree polynomial, we are looking at the maximum number of turning points. So, the end behavior of increasing without 
bound to the right and decreasing without bound to the left will continue. Thus, all the x-intercepts for the function are shown. 
So either the multiplicity of x = −3 is 1 and there are two complex solutions, which is what we found, or the multiplicity at  
x = −3 is three. Either way, our result is correct.

x

y

–2–4–6

–6

–12

–18

2

6

12

18

4 6

Cross

Figure 2

Try It #4

Find the zeros of f (x) = 2x3 + 5x2 − 11x + 4.

Using the Linear Factorization Theorem to Find Polynomials with Given Zeros
A vital implication of the Fundamental Theorem of Algebra, as we stated above, is that a polynomial function of degree 
n will have n zeros in the set of complex numbers, if we allow for multiplicities. This means that we can factor the 
polynomial function into n factors. The Linear Factorization Theorem tells us that a polynomial function will have 
the same number of factors as its degree, and that each factor will be in the form (x − c), where c is a complex number.

Let f be a polynomial function with real coefficients, and suppose a + bi, b ≠ 0, is a zero of f (x). Then, by the Factor 
Theorem, x − (a + bi) is a factor of f (x). For f to have real coefficients, x − (a − bi) must also be a factor of f (x). This is 
true because any factor other than x − (a − bi), when multiplied by x − (a + bi), will leave imaginary components in 
the product. Only multiplication with conjugate pairs will eliminate the imaginary parts and result in real coefficients. 
In other words, if a polynomial function f with real coefficients has a complex zero a + bi, then the complex conjugate 
a − bi must also be a zero of f (x). This is called the Complex Conjugate Theorem.

complex conjugate theorem 
According to the Linear Factorization Theorem, a polynomial function will have the same number of factors as 
its degree, and each factor will be in the form (x − c), where c is a complex number.

If the polynomial function f has real coefficients and a complex zero in the form a + bi, then the complex 
conjugate of the zero, a − bi, is also a zero.

How To…
Given the zeros of a polynomial function f and a point (c, f (c)) on the graph of f, use the Linear Factorization Theorem 
to find the polynomial function.

1.  Use the zeros to construct the linear factors of the polynomial.
2.  Multiply the linear factors to expand the polynomial.
3.  Substitute (c, f (c)) into the function to determine the leading coefficient.
4.  Simplify.
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Example  7	� Using the Linear Factorization Theorem to Find a Polynomial with Given Zeros

Find a fourth degree polynomial with real coefficients that has zeros of −3, 2, i, such that f (−2) = 100.

Solution	 Because x = i is a zero, by the Complex Conjugate Theorem x = −i is also a zero. The polynomial must 
have factors of (x + 3), (x − 2), (x − i), and (x + i). Since we are looking for a degree 4 polynomial, and now have four 
zeros, we have all four factors. Let’s begin by multiplying these factors.

	 f (x) = a(x + 3)(x − 2)(x − i)(x + i)

	 f (x) = a(x2 + x − 6)(x2 + 1)

	 f (x) = a(x4 + x3 − 5x2 + x − 6)

We need to find a to ensure f (−2) = 100. Substitute x = −2 and f (2) = 100 into f (x).

	 100 = a((−2)4 + (−2)3 − 5(−2)2 + (−2) − 6)

	 100 = a(−20)

	 −5 = a

So the polynomial function is

	 f (x) = −5(x4 + x3 − 5x2 + x − 6)

or

	 f (x) = −5x4 − 5x3 + 25x2 − 5x + 30

Analysis	 We found that both i and −i were zeros, but only one of these zeros needed to be given. If i is a zero of a 
polynomial with real coefficients, then −i must also be a zero of the polynomial because −i is the complex conjugate of i.

Q & A…
If 2 + 3i were given as a zero of a polynomial with real coefficients, would 2 − 3i also need to be a zero?

Yes. When any complex number with an imaginary component is given as a zero of a polynomial with real coefficients, 
the conjugate must also be a zero of the polynomial.

Try It #5

Find a third degree polynomial with real coefficients that has zeros of 5 and −2i such that f (1) = 10.

Using Descartes’ Rule of Signs
There is a straightforward way to determine the possible numbers of positive and negative real zeros for any polynomial 
function. If the polynomial is written in descending order, Descartes’ Rule of Signs tells us of a relationship between 
the number of sign changes in f (x) and the number of positive real zeros. For example, the polynomial function below 
has one sign change.

	 f (x) = x 4 + x 3 + x 2 + x − 1

This tells us that the function must have 1 positive real zero.

There is a similar relationship between the number of sign changes in f (−x) and the number of negative real zeros.

	 f (−x) = (−x)4 + (−x)3 + (−x)2 + (−x) − 1

	 f (−x) =+x 4 − x 3 + x 2 − x − 1

In this case, f (−x) has 3 sign changes. This tells us that f (x) could have 3 or 1 negative real zeros.
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Descartes’ Rule of Signs 
According to Descartes’ Rule of Signs, if we let f (x) = anxn + an − 1 x

n − 1 + ... + a1 x + a0 be a polynomial function 
with real coefficients:
•	 The number of positive real zeros is either equal to the number of sign changes of f (x) or is less than the number 

of sign changes by an even integer.
•	 The number of negative real zeros is either equal to the number of sign changes of f (−x) or is less than the 

number of sign changes by an even integer.

Example  8	 Using Descartes’ Rule of Signs

Use Descartes’ Rule of Signs to determine the possible numbers of positive and negative real zeros for  
f (x) = −x4 − 3x3 + 6x2 − 4x − 12.
Solution	 Begin by determining the number of sign changes.

	 f (x) = −x 4 − 3x 3 + 6x 2 − 4x − 12

Figure 3

There are two sign changes, so there are either 2 or 0 positive real roots. Next, we examine f (−x) to determine the 
number of negative real roots.
	 f (−x) = −(−x)4 − 3(−x)3 + 6(−x)2 − 4(−x) − 12
	 f (−x) = −x 4 + 3x 3 + 6x 2 + 4x − 12

	 f (−x) = −x 4 + 3x 3 + 6x 2 + 4x − 12
Figure 4

Again, there are two sign changes, so there are either 2 or 0 negative real roots.

There are four possibilities, as we can see in Table 1.

Positive Real Zeros  Negative Real Zeros Complex Zeros Total Zeros
2 2 0 4
2 0 2 4
0 2 2 4
0 0 4 4

Table 1

Analysi s	 We can confirm the numbers of positive and negative 
real roots by examining a graph of the function. See  
Figure 5. We can see from the graph that the function has 0 
positive real roots and 2 negative real roots.
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f (x) = − x4  − 3x3 + 6x2  − 4x − 12
x = −4.42

Figure 5  

Try It #6

Use Descartes’ Rule of Signs to determine the maximum possible numbers of positive and negative real zeros for  
f (x) = 2x4 − 10x3 + 11x2 − 15x + 12. Use a graph to verify the numbers of positive and negative real zeros for the 
function.

Solving Real-World Applications
We have now introduced a variety of tools for solving polynomial equations. Let’s use these tools to solve the bakery 
problem from the beginning of the section.
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Example  9	 Solving Polynomial Equations

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The bakery wants 
the volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want the length 
of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. 
What should the dimensions of the cake pan be?

Solution	 Begin by writing an equation for the volume of the cake. The volume of a rectangular solid is given by V = lwh. 
We were given that the length must be four inches longer than the width, so we can express the length of the cake as l = w + 4.  
We were given that the height of the cake is one-third of the width, so we can express the height of the cake as  
h = ​ 1 __ 3 ​w. Let’s write the volume of the cake in terms of width of the cake.

	 V = (w + 4)(w)​ ​ 1 __ 3 ​w ​

	 V = ​ 1 __ 3 ​w 3 + ​ 4 __ 3 ​w 2

Substitute the given volume into this equation.

	 351 = ​ 1 __ 3 ​w 3 + ​ 4 __ 3 ​w 2	 Substitute 351 for V.

	 1053 = w 3 + 4w 2	 Multiply both sides by 3.

	 0 = w 3 + 4w 2 − 1053	 Subtract 1053 from both sides.

Descartes’ rule of signs tells us there is one positive solution. The Rational Zero Theorem tells us that the possible rational 
zeros are ±1, ±3, ±9, ±13, ±27, ±39, ±81, ±117, ±351, and ±1053. We can use synthetic division to test these possible 
zeros. Only positive numbers make sense as dimensions for a cake, so we need not test any negative values. Let’s begin 
by testing values that make the most sense as dimensions for a small sheet cake. Use synthetic division to check x = 1.

1 1 4 0 −1053
1 5      5

1 5 5 −1048
Since 1 is not a solution, we will check x = 3.

3 1 4   0 −1053
3 21    63

1 7 21 −990
Since 3 is not a solution either, we will test x = 9.

9 1   4   0 −1053
  9 117   1053

1 13 117       0

Synthetic division gives a remainder of 0, so 9 is a solution to the equation. We can use the relationships between the 
width and the other dimensions to determine the length and height of the sheet cake pan.

l = w + 4 = 9 + 4 = 13 and h = ​ 1 __ 3 ​w = ​ 1 __ 3 ​(9) = 3

The sheet cake pan should have dimensions 13 inches by 9 inches by 3 inches.

Try It #7

A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters. The client tells the 
manufacturer that, because of the contents, the length of the container must be one meter longer than the width, and 
the height must be one meter greater than twice the width. What should the dimensions of the container be?

Access these online resources for additional instruction and practice with zeros of polynomial functions.
•	 Real Zeros, Factors, and Graphs of Polynomial Functions (http://openstaxcollege.org/l/realzeros)
•	 Complex Factorization Theorem (http://openstaxcollege.org/l/factortheorem)
•	 Find the Zeros of a Polynomial Function (http://openstaxcollege.org/l/findthezeros)
•	 Find the Zeros of a Polynomial Function 2 (http://openstaxcollege.org/l/findthezeros2)
•	 Find the Zeros of a Polynomial Function 3 (http://openstaxcollege.org/l/findthezeros3)

This OpenStax book is available for free at http://cnx.org/content/col11667/latest

http://openstaxcollege.org/l/realzeros
http://openstaxcollege.org/l/factortheorem
http://openstaxcollege.org/l/findthezeros
http://openstaxcollege.org/l/findthezeros2
http://openstaxcollege.org/l/findthezeros3
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3.6 s ection EXERCISES

Verbal

1.	 Describe a use for the Remainder Theorem. 2.	 Explain why the Rational Zero Theorem does not 
guarantee finding zeros of a polynomial function.

3.	What is the difference between rational and real 
zeros?

4.	 If Descartes’ Rule of Signs reveals a no change 
of signs or one sign of changes, what specific 
conclusion can be drawn?

5.	 If synthetic division reveals a zero, why should we 
try that value again as a possible solution?

Algebraic

For the following exercises, use the Remainder Theorem to find the remainder.

6.	 (x4 − 9x2 + 14) ÷ (x − 2) 7.	 (3x3 − 2x2 + x − 4) ÷ (x + 3)

8.	 (x4 + 5x3 − 4x − 17) ÷ (x + 1) 9.	 (−3x2 + 6x + 24) ÷ (x − 4)

10.	 (5x5 − 4x4 + 3x3 − 2x2 + x − 1) ÷ (x + 6) 11.	 (x4 − 1) ÷ (x − 4)

12.	 (3x3 + 4x2 − 8x + 2) ÷ (x − 3) 13.	 (4x3 + 5x2 − 2x + 7) ÷ (x + 2)

For the following exercises, use the Factor Theorem to find all real zeros for the given polynomial function and one 
factor.

14.	 f (x) = 2x3 − 9x2 + 13x − 6; x − 1 15.	 f (x) = 2x3 + x2 − 5x + 2; x + 2

16.	 f (x) = 3x3 + x2 − 20x + 12; x + 3 17.	 f (x) = 2x3 + 3x2 + x + 6; x + 2

18.	 f (x) = −5x3 + 16x2 − 9; x − 3 19.	 x3 + 3x2 + 4x + 12; x + 3

20.	4x3 − 7x + 3; x − 1 21.	 2x3 + 5x2 − 12x − 30, 2x + 5

For the following exercises, use the Rational Zero Theorem to find all real zeros.

22.	 x3 − 3x2 − 10x + 24 = 0 23.	 2x3 + 7x2 − 10x − 24 = 0 24.	 x3 + 2x2 − 9x − 18 = 0

25.	 x3 + 5x2 − 16x − 80 = 0 26.	 x3 − 3x2 − 25x + 75 = 0 27.	 2x3 − 3x2 − 32x − 15 = 0

28.	 2x3 + x2 − 7x − 6 = 0 29.	 2x3 − 3x2 − x + 1 = 0 30.	 3x3 − x2 − 11x − 6 = 0

31.	 2x3 − 5x2 + 9x − 9 = 0 32.	 2x3 − 3x2 + 4x + 3 = 0 33.	 x4 − 2x3 − 7x2 + 8x + 12 = 0

34.	 x4 + 2x3 − 9x2 − 2x + 8 = 0 35.	4x4 + 4x3 − 25x2 − x + 6 = 0 36.	 2x4 − 3x3 − 15x2 + 32x − 12 = 0

37.	 x4 + 2x3 − 4x2 − 10x − 5 = 0 38.	4x3 − 3x + 1 = 0 39.	 8x4 + 26x3 + 39x2 + 26x + 6

For the following exercises, find all complex solutions (real and non-real).

40.	 x3 + x2 + x + 1 = 0 41.	 x3 − 8x2 + 25x − 26 = 0 42.	 x3 + 13x2 + 57x + 85 = 0

43.	 3x3 − 4x2 + 11x + 10 = 0 44.	 x4 + 2x3 + 22x2 + 50x − 75 = 0 45.	 2x3 − 3x2 + 32x + 17 = 0

Graphical

For the following exercises, use Descartes’ Rule to determine the possible number of positive and negative solutions. 
Then graph to confirm which of those possibilities is the actual combination.

46.	 f (x) = x3 − 1 47.	 f (x) = x4 − x2 − 1 48.	 f (x) = x3 − 2x2 − 5x + 6

49.	 f (x) = x3 − 2x2 + x − 1 50.	 f (x) = x4 + 2x3 − 12x2 + 14x − 5 51.	 f (x) = 2x3 + 37x2 + 200x + 300
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52.	 f (x) = x3 − 2x2 − 16x + 32 53.	 f (x) = 2x4 − 5x3 − 5x2 + 5x + 3 54.	 f (x) = 2x4 − 5x3 − 14x2 + 20x + 8

55.	 f (x) = 10x4 − 21x2 + 11

Numeric

For the following exercises, list all possible rational zeros for the functions.

56.	 f (x) = x4 + 3x3 − 4x + 4 57.	 f (x) = 2x3 + 3x2 − 8x + 5 58.	 f (x) = 3x3 + 5x2 − 5x + 4

59.	 f (x) = 6x4 − 10x2 + 13x + 1 60.	 f (x) = 4x5 − 10x4 + 8x3 + x2 − 8

Technology

For the following exercises, use your calculator to graph the polynomial function. Based on the graph, find the rational 
zeros. All real solutions are rational.

61.	 f (x) = 6x3 − 7x2 + 1 62.	 f (x) = 4x3 − 4x2 − 13x − 5

63.	 f (x) = 8x3 − 6x2 − 23x + 6 64.	 f (x) = 12x4 + 55x3 + 12x2 − 117x + 54

65.	 f (x) = 16x4 − 24x3 + x2 − 15x + 25

Extensions

For the following exercises, construct a polynomial function of least degree possible using the given information.
66.	 Real roots: −1, 1, 3 and (2, f (2)) = (2, 4) 67.	 Real roots: −1, 1 (with multiplicity 2 and 1) and  

(2, f (2)) = (2, 4)

68.	 Real roots: −2, ​ 1 __ 2 ​ (with multiplicity 2) and  
(−3, f (−3)) = (−3, 5)

69.	 Real roots: −​ 1 __ 2 ​, 0, ​ 1 __ 2 ​ and (−2, f (−2)) = (−2, 6)

70.	 Real roots: −4, −1, 1, 4 and (−2, f (−2)) = (−2, 10)

Real-World Applications

For the following exercises, find the dimensions of the box described.

71.	The length is twice as long as the width. The height  
is 2 inches greater than the width. The volume is  
192 cubic inches.

72.	The length, width, and height are consecutive whole 
numbers. The volume is 120 cubic inches.

73.	The length is one inch more than the width, which is 
one inch more than the height. The volume is  
86.625 cubic inches.

74.	The length is three times the height and the height is 
one inch less than the width. The volume is  
108 cubic inches.

75.	The length is 3 inches more than the width. The 
width is 2 inches more than the height. The volume 
is 120 cubic inches.

For the following exercises, find the dimensions of the right circular cylinder described.

76.	The radius is 3 inches more than the height. The 
volume is 16π cubic meters.

77.	The height is one less than one half the radius.  
The volume is 72π cubic meters.

78.	The radius and height differ by one meter. The  
radius is larger and the volume is 48π cubic meters.

79.	The radius and height differ by two meters.  
The height is greater and the volume is 28.125π 
cubic meters.

80.	The radius is ​ 1 __ 3 ​ meter greater than the height. The 

volume is ​ 98 ___ 9π ​π cubic meters.

This OpenStax book is available for free at http://cnx.org/content/col11667/latest
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