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Figure 1  Electron micrograph of E. Coli bacteria (credit: “Mattosaurus,” Wikimedia Commons)
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Introduction
Focus in on a square centimeter of your skin. Look closer. Closer still. If you could look closely enough, you would see 
hundreds of thousands of microscopic organisms. They are bacteria, and they are not only on your skin, but in your mouth, 
nose, and even your intestines. In fact, the bacterial cells in your body at any given moment outnumber your own cells. But that 
is no reason to feel bad about yourself. While some bacteria can cause illness, many are healthy and even essential to the body.

Bacteria commonly reproduce through a process called binary fission, during which one bacterial cell splits into two. 
When conditions are right, bacteria can reproduce very quickly. Unlike humans and other complex organisms, the time 
required to form a new generation of bacteria is often a matter of minutes or hours, as opposed to days or years.[16]

For simplicity’s sake, suppose we begin with a culture of one bacterial cell that can divide every hour. Table 1 shows 
the number of bacterial cells at the end of each subsequent hour. We see that the single bacterial cell leads to over 
one thousand bacterial cells in just ten hours! And if we were to extrapolate the table to twenty-four hours, we would 
have over 16 million!

Hour 0 1 2 3 4 5 6 7 8 9 10
Bacteria 1 2 4 8 16 32 64 128 256 512 1024

Table 1

In this chapter, we will explore exponential functions, which can be used for, among other things, modeling growth 
patterns such as those found in bacteria. We will also investigate logarithmic functions, which are closely related to 
exponential functions. Both types of functions have numerous real-world applications when it comes to modeling 
and interpreting data.
16.  Todar, PhD, Kenneth. Todar’s Online Te xtbook of Bacteriology. http://te xtbookofbacteriology.net/growth_3.html.
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Learning Objectives

In this section, you will:

•	 �Use like bases to solve exponential equations.

•	 �Use logarithms to solve exponential equations.

•	 �Use the definition of a logarithm to solve logarithmic equations.

•	 �Use the one-to-one property of logarithms to solve logarithmic equations.

•	 �Solve applied problems involving exponential and logarithmic equations.

4.6 E xponential and Logarithmic Equations

Figure 1  Wild rabbits in Australia. The rabbit population grew so quickly in Australia that the event became known as the “rabbit plague.” (credit: Richard Taylor, Flickr)

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because 
Australia had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit 
population numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions. 
Equations resulting from those exponential functions can be solved to analyze and make predictions about exponential 
growth. In this section, we will learn techniques for solving exponential functions.

Using Like Bases to Solve Exponential Equations
The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions 
tells us that, for any real numbers b, S, and T, where b > 0, b ≠ 1, bS = bT if and only if S = T.

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also 
applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the 
rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions 
are one-to-one to set the exponents equal to one another, and solve for the unknown.
For example, consider the equation 34x − 7 = ​ 3

2x
 _ 3 ​ . To solve for x, we use the division property of exponents to rewrite 

the right side so that both sides have the common base, 3. Then we apply the one-to-one property of exponents by 
setting the exponents equal to one another and solving for x :

	 34x − 7 = ​ 3
2x
 ___ 3 ​

	 34x − 7 = ​ 3
2x
 ___ 31 ​	  Rewrite 3 as 31.

	 34x − 7 = 32x − 1	 Use the division property of exponents.
	 4x − 7 = 2x − 1	 Apply the one-to-one property of exponents.
	 2x = 6 	 Subtract 2x and add 7 to both sides.
	 x = 3 	 Divide by 3.
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using the one-to-one property of exponential functions to solve exponential equations
For any algebraic expressions S and T, and any positive real number b ≠ 1,

bS = bT if and only if S = T

How To…
Given an exponential equation with the form bS = bT, where S and T are algebraic expressions with an unknown, solve 
for the unknown.

1.  Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form bS = bT.
2.  Use the one-to-one property to set the exponents equal.
3.  Solve the resulting equation, S = T, for the unknown.

Example  1	 Solving an Exponential Equation with a Common Base

Solve 2x − 1 = 22x − 4.
Solution	 2x − 1 = 22x − 4	 The common base is 2.
	 x − 1 = 2x − 4	 By the one-to-one property the exponents must be equal.

	 x = 3	 Solve for x.

Try It #1

Solve 52x = 53x + 2.

Rewriting Equations So All Powers Have the Same Base

Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite 
the terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation 256 = 4x − 5. We can rewrite both sides of this equation as a power of 2. Then we 
apply the rules of exponents, along with the one-to-one property, to solve for x :

	 256 = 4x − 5

	 28 = (22)x − 5	 Rewrite each side as a power with base 2.
	 28 = 22x − 10	 Use the one-to-one property of exponents.
	 8 = 2x − 10	 Apply the one-to-one property of exponents.
	 18 = 2x	 Add 10 to both sides.
	 x = 9	 Divide by 2.

How To…
Given an exponential equation with unlike bases, use the one-to-one property to solve it.

1.  Rewrite each side in the equation as a power with a common base.
2.  Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form bS = bT.
3.  Use the one-to-one property to set the exponents equal.
4.  Solve the resulting equation, S = T, for the unknown.

Example  2	 Solving Equations by Rewriting Them to Have a Common Base

Solve 8x + 2 = 16x + 1.

Solution	 8x + 2 = 16x + 1

	 (23)x + 2 = (24)x + 1	 Write 8 and 16 as powers of 2.
	 23x + 6 = 24x + 4	 To take a power of a power, multiply exponents .
	 3x + 6 = 4x + 4	 Use the one-to-one property to set the exponents equal.
	 x = 2	 Solve for x.

This OpenStax book is available for free at http://cnx.org/content/col11667/latest
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Try It #2

Solve 52x = 253x + 2.

Example  3	� Solving Equations by Rewriting Roots with Fractional Exponents to Have a Common Base

Solve 25x = ​√
—
 2 ​.

Solution	 25x = ​2​​ 
1 __ 2 ​​	 Write the square root of 2 as a power of 2.

	 5x = ​ 1 __ 2 ​	 Use the one-to-one property.

	 x = ​ 1 __ 10 ​	 Solve for x.

Try It #3

Solve 5x = ​√
—
 5 ​.

Q & A…
Do all exponential equations have a solution? If not, how can we tell if there is a solution during the problem-
solving process?

No. Recall that the range of an exponential function is always positive. While solving the equation, we may obtain an 
expression that is undefined.

Example  4	 Solving an Equation with Positive and Negative Powers

Solve 3x + 1 = −2.

Solution	 This equation has no solution. There is no real value of x that will make the equation a true statement 
because any power of a positive number is positive.

Analysis	 Figure 2 shows that the two graphs do not cross so the left side is never equal to the right side. Thus the 
equation has no solution.
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Try It #4

Solve 2x = −100.

Solving Exponential Equations Using Logarithms
Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve by 
taking the logarithm of each side. Recall, since log(a) = log(b) is equivalent to a = b, we may apply logarithms with 
the same base on both sides of an exponential equation.



SECTION 4.6  Exponential and Logarithmic Equations 393

How To…
Given an exponential equation in which a common base cannot be found, solve for the unknown.
1.  Apply the logarithm of both sides of the equation.

   a. If one of the terms in the equation has base 10, use the common logarithm.
   b. If none of the terms in the equation has base 10, use the natural logarithm.
2.  Use the rules of logarithms to solve for the unknown.

Example  5	 Solving an Equation Containing Powers of Different Bases

Solve 5x + 2 = 4x.

Solution	 5x + 2 = 4x	� There is no easy way to get the powers to have the same base .
	 ln(5x + 2) = ln(4x)	 Take ln of both sides.
	 (x + 2)ln(5) = xln(4)	 Use laws of logs.
	 xln(5) + 2ln(5) = xln(4)	 Use the distributive law.
	 xln(5) − xln(4) = − 2ln(5)	 Get terms containing x on one side, terms without x on the other.
	  x(ln(5) − ln(4)) = − 2ln(5)	� On the left hand side, factor out an x.

	 xln ​ ​ 5 __ 4 ​ ​ = ln ​ ​ 1 __ 25 ​ ​	 Use the laws of logs.

	 x =   ​ 
ln​ ​ 1 __ 25 ​ ​ 

 _ 
 ln​ ​ 5 __ 4 ​ ​

 ​  	 Divide by the coefficient of x.

Try It #5

Solve 2x = 3x + 1.

Q & A…
Is there any way to solve 2x = 3x?
Yes. The solution is 0.

Equations Containing e

One common type of exponential equations are those with base e. This constant occurs again and again in nature, in 
mathematics, in science, in engineering, and in finance. When we have an equation with a base e on either side, we 
can use the natural logarithm to solve it.

How To…
Given an equation of the form y = Aekt, solve for t.

1.  Divide both sides of the equation by A.
2. Apply the natural logarithm of both sides of the equation.
3.  Divide both sides of the equation by k.

Example  6	 Solve an Equation of the Form y = Ae k t

Solve 100 = 20e 2t.

Solution	 100 = 20e 2t

	 5 = e 2t	 Divide by the coefficient of the power .

	 ln(5) = 2t	 Take ln of both sides. Use the fact that ln(x) and e x are inverse functions.

	 t = ​ ln(5) ___ 2 ​	  Divide by the coefficient of t.

This OpenStax book is available for free at http://cnx.org/content/col11667/latest
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Analysi s	 Using laws of logs, we can also write this answer in the form t = ln​√
—
 5 ​. If we want a decimal approximation 

of the answer, we use a calculator.

Try It #6

Solve 3e 0.5t = 11.

Q & A…
Does every equation of the form y = Aekt have a solution?

No. There is a solution when k ≠ 0, and when y and A are either both 0 or neither 0, and they have the same sign. An 
example of an equation with this form that has no solution is 2 = −3et.

Example  7	 Solving an Equation That Can Be Simplified to the Form y = Ae k t

Solve 4e2x + 5 = 12.

Solution	 4e2x + 5 = 12

	 4e2x = 7	 Combine like terms.

	 e2x = ​ 7 __ 4 ​	 Divide by the coefficient of the power.

	 2x = ln ​ ​ 7 __ 4 ​ ​	 Take ln of both sides.

	 x = ​ 1 __ 2 ​ ln ​ ​ 7 __ 4 ​ ​	 Solve for x.

Try It #7

Solve 3 + e2t = 7e2t.

Extraneous Solutions

Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution that is correct 
algebraically but does not satisfy the conditions of the original equation. One such situation arises in solving when the 
logarithm is taken on both sides of the equation. In such cases, remember that the argument of the logarithm must be 
positive. If the number we are evaluating in a logarithm function is negative, there is no output.

Example  8	 Solving Exponential Functions in Quadratic Form

Solve e2x − e x = 56.

Solution

	 e 2x − e x = 56

	 e 2x − e x − 56 = 0	� Get one side of the equation equal to zero.

	 (e x + 7)(e x − 8) = 0	� Factor by the FOIL method.

	 e x + 7 = 0 or e x − 8 = 0	� If a product is zero, then one factor must be zero.

	 e x = −7 or e x = 8 	 Isolate the exponentials.

	 e x = 8	� Reject the equation in which the power equals a negative number.

	 x = ln(8)	� Solve the equation in which the power equals a positive number.

Analysi s	 When we plan to use factoring to solve a problem, we always get zero on one side of the equation, because 
zero has the unique property that when a product is zero, one or both of the factors must be zero. We reject the equation 
e x = −7 because a positive number never equals a negative number. The solution ln(−7) is not a real number, and in the 
real number system this solution is rejected as an extraneous solution.
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Try It #8

Solve e2x = e x + 2.

Q & A…
Does every logarithmic equation have a solution?

No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous solutions.

Using the Definition of a Logarithm to Solve Logarithmic Equations
We have already seen that every logarithmic equation logb(x) = y is equivalent to the exponential equation b y = x. We 
can use this fact, along with the rules of logarithms, to solve logarithmic equations where the argument is an algebraic 
expression.

For example, consider the equation log2(2) + log2(3x − 5) = 3. To solve this equation, we can use rules of logarithms 
to rewrite the left side in compact form and then apply the definition of logs to solve for x:

	 log2(2) + log2(3x − 5) = 3
	 log2(2(3x − 5)) = 3	 Apply the product rule of logarithms.
	 log2(6x − 10) = 3	 Distribute.
	 23 = 6x − 10	 Apply the definition of a logarithm.
	 8 = 6x − 10	 Calculate 23.
	 18 = 6x	 Add 10 to both sides.
	 x = 3	 Divide by 6.

using the definition of a logarithm to solve logarithmic equations
For any algebraic expression S and real numbers b and c, where b > 0, b ≠ 1,

logb(S) = c if and only if b c = S

Example  9	 Using Algebra to Solve a Logarithmic Equation

Solve 2ln(x) + 3 = 7.

Solution	 2ln(x) + 3 = 7

	 2ln(x) = 4	 Subtract 3.

	 ln(x) = 2	 Divide by 2.

	 x = e2	 Rewrite in exponential form.

Try It #9

Solve 6 + ln(x) = 10.

Example  10	� Using Algebra Before and After Using the Definition of the Natural Logarithm

Solve 2ln(6x) = 7.

Solution	 2ln(6x) = 7

	 ln(6x) = ​ 7 __ 2 ​	 Divide by 2.

	 6x = ​e​​ 
7 __ 2 ​​	 Use the definition of ln.

	 x =​ 1 __ 6 ​​e​​ 
7 __ 2 ​​	 Divide by 6.

This OpenStax book is available for free at http://cnx.org/content/col11667/latest
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Try It #10

Solve 2ln(x + 1) = 10.

Example  11	� Using a Graph to Understand the Solution to a Logarithmic Equation

Solve ln(x) = 3.

Solution	 ln(x) = 3
	 x = e 3	 Use the definition of the natural logarithm.

Figure 3 represents the graph of the equation. On the graph, the x-coordinate of the point at which the two graphs 
intersect is close to 20. In other words e3 ≈ 20. A calculator gives a better approximation: e3 ≈ 20.0855.
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y = 1n(x)

(e3, 3) ≈ (20.0855, 3)

Figure 3  The graphs of y  = ln(x ) and y  = 3 cross at the point (e 3, 3), which is approximately (20.0855, 3).

Try It #11

Use a graphing calculator to estimate the approximate solution to the logarithmic equation 2x = 1000 to 2 decimal 
places.

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations
As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-to-one 
property of logarithmic functions tells us that, for any real numbers x > 0, S > 0, T > 0 and any positive real number 
b, where b ≠ 1,

logb(S) = logb(T) if and only if S = T.
For example,

If log2(x − 1) = log2(8), then x − 1 = 8.

So, if x − 1 = 8, then we can solve for x, and we get x = 9. To check, we can substitute x = 9 into the original equation: 
log2(9 − 1) = log2(8) = 3. In other words, when a logarithmic equation has the same base on each side, the arguments 
must be equal. This also applies when the arguments are algebraic expressions. Therefore, when given an equation 
with logs of the same base on each side, we can use rules of logarithms to rewrite each side as a single logarithm. Then 
we use the fact that logarithmic functions are one-to-one to set the arguments equal to one another and solve for the 
unknown.

For example, consider the equation log(3x − 2) − log(2) = log(x + 4). To solve this equation, we can use the rules of 
logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property to solve for x:

	 log(3x − 2) − log(2) = log(x + 4)

	 log ​ ​ 3x − 2 ______ 2 ​  ​ = log(x + 4)	� Apply the quotient rule of logarithms.

	​  3x − 2 ______ 2 ​  = x + 4	 Apply the one to one property of a logarithm.

	 3x − 2 = 2x + 8	 Multiply both sides of the equation by 2.

	 x = 10	 Subtract 2x and add 2.
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To check the result, substitute x = 10 into log(3x − 2) − log(2) = log(x + 4).

	 log(3(10) − 2) − log(2) = log((10) + 4)

	 log(28) − log(2) = log(14)

	 log ​ ​ 28 __ 2 ​  ​ = log(14)	 The solution checks.

using the one-to-one property of logarithms to solve logarithmic equations
For any algebraic expressions S and T and any positive real number b, where b ≠ 1, 

logb(S) = logb(T) if and only if S = T

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an 
extraneous solution.

How To…
Given an equation containing logarithms, solve it using the one-to-one property.

1.  Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form 
logbS = logbT.

2.  Use the one-to-one property to set the arguments equal.
3.  Solve the resulting equation, S = T, for the unknown.

Example  12	� Solving an Equation Using the One-to-One Property of Logarithms

Solve ln(x2) = ln(2x + 3).

Solution

	 ln(x2) = ln(2x + 3)

	 x2 = 2x + 3	� Use the one-to-one property of the logarithm.

	 x2 − 2x − 3 = 0	� Get zero on one side before factoring.

	 (x − 3)(x + 1) = 0	 Factor using FOIL.

	 x − 3 = 0 or x + 1 = 0	� If a product is zero, one of the factors must be zero.

	 x = 3 or x = −1	 Solve for x.

Analysi s	 There are two solutions: 3 or −1. The solution −1 is negative, but it checks when substituted into the original 
equation because the argument of the logarithm functions is still positive.

Try It #12

Solve ln(x2) = ln(1).

Solving Applied Problems Using Exponential and Logarithmic Equations
In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have seen 
that any exponential function can be written as a logarithmic function and vice versa. We have used exponents to solve 
logarithmic equations and logarithms to solve exponential equations. We are now ready to combine our skills to solve 
equations that model real-world situations, whether the unknown is in an exponent or in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a 
radioactive substance to decay, called its half-life. Table 1 lists the half-life for several of the more common radioactive 
substances.

This OpenStax book is available for free at http://cnx.org/content/col11667/latest
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Substance Use Half-life
gallium-67 nuclear medicine 80 hours
cobalt-60 manufacturing 5.3 years

technetium-99m nuclear medicine 6 hours
americium-241 construction 432 years

carbon-14 archeological dating 5,715 years
uranium-235 atomic power 703,800,000 years

Table 1

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to 
calculate the amount remaining after a specified time. We can use the formula for radioactive decay:

	 A(t) = A0​​e ​​ 
ln(0.5) _____ 

T
  ​t​​

	 A(t) = A0e  ​ln(0.5)​
​ t __ 
T
 ​
​
 

	 A(t) = A0​(e ln(0.5))​​ 
 t _ 
T

 ​​

	 A(t) = A0​​ ​ 1 __ 2 ​ ​​
​ t _ 
T

 ​
​  

where
•	A0 is the amount initially present
•	 T is the half-life of the substance
•	 t is the time period over which the substance is studied
•	 y is the amount of the substance present after time t

Example  13	� Using the Formula for Radioactive Decay to Find the Quantity of a Substance

How long will it take for ten percent of a 1,000-gram sample of uranium-235 to decay?

Solution	 y = 1000​e ​​ 
ln(0.5) __________ 703,800,000 ​t​ 

	 900 = 1000​e ​​ 
ln(0.5) __________ 703,800,000 ​t​ 	� After 10% decays, 900 grams are left.

	 0.9 = ​e ​​ 
ln(0.5) __________ 703,800,000 ​t​ 	 Divide by 1000.

	 ln(0.9) = ln ​ ​e ​​ 
ln(0.5) __________ 703,800,000 ​t​ ​ 	 Take ln of both sides.

	 ln(0.9) = ​ 
ln(0.5)

 __ 703,800,000 ​t 	 ln(eM) = M

	 t = 703,800,000 × ​ 
ln(0.9)

 _ 
ln(0.5)

 ​years	 Solve for t.

	 t ≈ 106,979,777 years

Analysi s	 Ten percent of 1,000 grams is 100 grams. If 100 grams decay, the amount of uranium-235 remaining is 900 
grams.

Try It #13

How long will it take before twenty percent of our 1,000-gram sample of uranium-235 has decayed?

Access these online resources for additional instruction and practice with exponential and logarithmic equations.

•	 Solving Logarithmic Equations (http://openstaxcollege.org/l/solvelogeq)

•	 Solving Exponential Equations with Logarithms (http://openstaxcollege.org/l/solveexplog)

http://openstaxcollege.org/l/solvelogeq
http://openstaxcollege.org/l/solveexplog
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4.6  Section EXERCISES

Verbal

1.	 How can an exponential equation be solved? 2.	When does an extraneous solution occur? How can 
an extraneous solution be recognized?

3.	When can the one-to-one property of logarithms be 
used to solve an equation? When can it not be used?

Algebraic
For the following exercises, use like bases to solve the exponential equation.

4.	4−3v − 2 = 4−v
5.	 64 ⋅ 43x = 16 6.	 32x + 1 ⋅ 3x = 243

7.	 2−3n ⋅ ​ 1 _ 4 ​ = 2n + 2 8.	 625 ⋅ 53x + 3 = 125 9.	 ​ 363b
 _ 

362b
 ​ = 216 2 − b

10.	 ​ ​ 1 _ 
64

 ​ ​
3n

 ⋅ 8 = 26

For the following exercises, use logarithms to solve.
11.	 9x − 10 = 1 12.	 2e 6x = 13 13.	 e r + 10 − 10 = −42

14.	 2 ⋅ 109a = 29 15.	  −8 ⋅ 10 p + 7 − 7 = −24 16.	 7e 3n − 5 + 5 = −89

17.	 e −3k + 6 = 44 18.	  −5e 9x − 8 − 8 = −62 19.	  −6e 9x + 8 + 2 = −74
20.	 2x + 1 = 52x − 1 21.	 e 2x − e x − 132 = 0 22.	 7e8x + 8 − 5 = −95

23.	10e 8x + 3 + 2 = 8 24.	4e 3x + 3 − 7 = 53 25.	 8e−5x − 2 − 4 = −90

26.	 32x + 1 = 7x − 2 27.	 e 2x − e x − 6 = 0 28.	 3e 3 − 3x + 6 = −31

For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation.

29.	 log ​ ​  1 _ 100 ​ ​ = −2 30.	 log324(18) = ​ 1 _ 2 ​

For the following exercises, use the definition of a logarithm to solve the equation.

31.	 5log7(n) = 10 32.	  −8log9(x) = 16 33.	4 + log2(9k) = 2
34.	 2log(8n + 4) + 6 = 10 35.	10 − 4ln(9 − 8x) = 6

For the following exercises, use the one-to-one property of logarithms to solve.
36.	 ln(10 − 3x) = ln(−4x) 37.	 log13(5n − 2) = log13(8 − 5n) 38.	 log(x + 3) − log(x) = log(74)

39.	 ln(−3x) = ln(x2 − 6x) 40.	 log4(6 − m) = log43(m) 41.	 ln(x − 2) − ln(x) = ln(54)

42.	 log9(2n2 − 14n)= log9(−45 + n2) 43.	 ln(x2 − 10) + ln(9) = ln(10)

For the following exercises, solve each equation for x.
44.	 log(x + 12) = log(x) + log(12) 45.	 ln(x) + ln(x − 3) = ln(7x) 46.	 log2(7x + 6) = 3
47.	 ln(7) + ln(2 − 4x2) = ln(14) 48.	 log8(x + 6) − log8(x) = log8(58) 49.	 ln(3) − ln(3 − 3x) = ln(4)
50.	 log3(3x) − log3(6) = log3(77)

GRAPHICAL
For the following exercises, solve the equation for x, if there is a solution. Then graph both sides of the equation, and 
observe the point of intersection (if it exists) to verify the solution.

51.	 log9(x) − 5 = −4 52.	 log3(x) + 3 = 2 53.	 ln(3x) = 2

54.	 ln(x − 5) = 1 55.	 log(4) + log(−5x) = 2 56.	  −7 + log3 (4 − x) = −6
57.	 ln(4x − 10) − 6 = −5 58.	 log(4 − 2x) = log(−4x) 59.	 log11(−2x2 − 7x) = log11(x − 2)

60.	 ln(2x + 9) = ln(−5x) 61.	 log9(3 − x) = log9(4x − 8) 62.	 log(x2 + 13) = log(7x + 3)

63.	 ​  3 _ 
log2(10)

 ​ − log(x − 9) = log(44) 64.	 ln(x) − ln(x + 3) = ln(6)
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For the following exercises, solve for the indicated value, and graph the situation showing the solution point.

65.	An account with an initial deposit of $6,500 earns 
7.25% annual interest, compounded continuously.  
How much will the account be worth after 20 years?

66.	The formula for measuring sound intensity in 
decibels D is defined by the equation D = 10 log ​ ​ I __ I0

 ​ ​,  
where I is the intensity of the sound in watts per 
square meter and I0 = 10−12 is the lowest level of 
sound that the average person can hear. How many 
decibels are emitted from a jet plane with a sound 
intensity of 8.3 ⋅ 102 watts per square meter?

67.	The population of a small town is modeled by the 
equation P = 1650e0.5t where t is measured in years.  
In approximately how many years will the town’s 
population reach 20,000?

Technology

For the following exercises, solve each equation by rewriting the exponential expression using the indicated logarithm. 
Then use a calculator to approximate the variable to 3 decimal places.

68.	1000(1.03)t = 5000 using the common log. 69.	 e5x = 17 using the natural log
70.	 3(1.04)3t = 8 using the common log 71.	 34x − 5 = 38 using the common log
72.	 50e−0.12t = 10 using the natural log

For the following exercises, use a calculator to solve the equation. Unless indicated otherwise, round all answers to 
the nearest ten-thousandth.

 
73.	 7e3x − 5 + 7.9 = 47 74.	 ln(3) + ln(4.4x + 6.8) = 2 75.	 log(−0.7x − 9) = 1 + 5log(5)

76.	Atmospheric pressure P in pounds per square inch is 
represented by the formula P = 14.7e−0.21x, where x is 
the number of miles above sea level. To the nearest 
foot, how high is the peak of a mountain with an 
atmospheric pressure of 8.369 pounds per square 
inch? (Hint: there are 5,280 feet in a mile)

77.	The magnitude M of an earthquake is represented by 

the equation M = ​ 2 _ 3 ​ log ​ ​ E __ E0

 ​ ​ where E is the amount 

of energy released by the earthquake in joules and  
E0 = 104.4 is the assigned minimal measure released by 
an earthquake. To the nearest hundredth, what would 
the magnitude be of an earthquake releasing  
1.4 · 1013 joules of energy?

Extensions

78.	 Use the definition of a logarithm along with the one-
to-one property of logarithms to prove that blogb x = x.

79.	 Recall the formula for continually compounding 
interest, y = Ae kt. Use the definition of a logarithm 
along with properties of logarithms to solve the 
formula for time t such that t is equal to a single 
logarithm.

80.	 Recall the compound interest formula A = a ​ 1 + ​ r _ 
k

 ​ ​kt.  
Use the definition of a logarithm along with 
properties of logarithms to solve the formula for time t.

81.	 Newton’s Law of Cooling states that the temperature 
T of an object at any time t can be described by the 
equation T = Ts + (T0 − Ts)e−kt, where Ts is the 
temperature of the surrounding environment, T0 
is the initial temperature of the object, and k is the 
cooling rate. Use the definition of a logarithm along 
with properties of logarithms to solve the formula for 
time t such that t is equal to a single logarithm.
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