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Polynomial and Rational Functions

Figure 1 35-mm film, once the standard for capturing photographic images, has been made largely obsolete by digital photography. 

(credit “film”: modification of work by Horia Varlan; credit “memory cards”: modification of work by Paul Hudson)
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Introduction

Digital photography has dramatically changed the nature of photography. No longer is an image etched in the emulsion 

on a roll of �lm. Instead, nearly every aspect of recording and manipulating images is now governed by mathematics. 

An image becomes a series of numbers, representing the characteristics of light striking an image sensor. When we 

open an image �le, so�ware on a camera or computer interprets the numbers and converts them to a visual image. 

Photo editing so�ware uses complex polynomials to transform images, allowing us to manipulate the image in order 

to crop details, change the color palette, and add special e�ects. Inverse functions make it possible to convert from one 

�le format to another. In this chapter, we will learn about these concepts and discover how mathematics can be used 

in such applications.
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CHAPTER 5 POLYNOMIAL AND RATIONAL FUNCTIONS402

LEARNING OBJECTIVES

In this section, you will:

• Evaluate a polynomial using the Remainder Theorem.

• Use the Factor Theorem to solve a polynomial equation.

• Use the Rational Zero Theorem to find rational zeros.

• Find zeros of a polynomial function.

• Use the Linear Factorization Theorem to find polynomials with given zeros.

• Use Decartes' Rule of Signs.

• Solve real-world applications of polynomial equations.

5.5 ZEROS OF POLYNOMIAL FUNCTIONS

A new bakery o�ers decorated sheet cakes for children’s birthday parties and other special occasions. �e bakery wants 

the volume of a small cake to be 351 cubic inches. �e cake is in the shape of a rectangular solid. �ey want the length 

of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. 

What should the dimensions of the cake pan be?

�is problem can be solved by writing a cubic function and solving a cubic equation for the volume of the cake. In 

this section, we will discuss a variety of tools for writing polynomial functions and solving polynomial equations.

Evaluating a Polynomial Using the Remainder Theorem

In the last section, we learned how to divide polynomials. We can now use polynomial division to evaluate polynomials 

using the Remainder �eorem. If the polynomial is divided by x − k, the remainder may be found quickly by 

evaluating the polynomial function at k, that is, f (k) Let’s walk through the proof of the theorem.

Recall that the Division Algorithm states that, given a polynomial dividend f (x) and a non-zero polynomial divisor d(x) 

where the degree of d(x) is less than or equal to the degree of f (x), there exist unique polynomials q(x) and r(x) such that

 f (x) = d(x)q(x) + r(x)

If the divisor, d(x), is x − k, this takes the form

f (x) = (x − k)q(x) + r

Since the divisor x − k is linear, the remainder will be a constant, r. And, if we evaluate this for x = k, we have

 f (k) = (k − k)q(k) + r

 = 0 ċ q(k) + r

 = r

In other words, f (k) is the remainder obtained by dividing f (x) by x − k.

the Remainder �eorem 

If a polynomial f (x) is divided by x − k, then the remainder is the value f (k).

How To…
Given a polynomial function f, evaluate f (x) at x = k using the Remainder �eorem.

1. Use synthetic division to divide the polynomial by x − k.

2. �e remainder is the value f (k).
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Example 1 Using the Remainder Theorem to Evaluate a Polynomial

Use the Remainder �eorem to evaluate f (x) = 6x4 − x3 − 15x2 + 2x − 7 at x = 2.

Solution To !nd the remainder using the Remainder �eorem, use synthetic division to divide the polynomial by 

x − 2.

2 6 −1 −15  2 −7

12  22 14 32

6 11  7 16 25

�e remainder is 25. �erefore, f (2) = 25.

Analysi s We can check our answer by evaluating f (2).

 f (x) = 6x4 − x3 −#15x2 + 2x − 7

 f (2) = 6(2)4 − (2)3 − 15(2)2 + 2(2) − 7

 = 25

Try It #1
Use the Remainder �eorem to evaluate f (x) = 2x5 − 3x4 − 9x3 + 8x2 + 2 at x = −3.

Using the Factor Theorem to Solve a Polynomial Equation

�e Factor �eorem is another theorem that helps us analyze polynomial equations. It tells us how the zeros of a 

polynomial are related to the factors. Recall that the Division Algorithm.

f (x) = (x − k)q(x) + r

If k is a zero, then the remainder r is f (k) = 0 and f (x) = (x − k)q(x) + 0 or f (x) = (x − k)q(x).

Notice, written in this form, x − k is a factor of f (x). We can conclude if k is a zero of f (x), then x − k is a factor of f (x).

Similarly, if x − k is a factor of f (x), then the remainder of the Division Algorithm f (x) = (x − k)q(x) + r is 0. �is 

tells us that k is a zero.

�is pair of implications is the Factor �eorem. As we will soon see, a polynomial of degree n in the complex number 

system will have n zeros. We can use the Factor �eorem to completely factor a polynomial into the product of n factors. 

Once the polynomial has been completely factored, we can easily determine the zeros of the polynomial.

the Factor �eorem 

According to the Factor �eorem, k is a zero of f (x) if and only if (x − k) is a factor of f (x).

How To…
Given a factor and a third-degree polynomial, use the Factor �eorem to factor the polynomial.

1. Use synthetic division to divide the polynomial by (x − k).

2. Con!rm that the remainder is 0.

3. Write the polynomial as the product of (x − k) and the quadratic quotient.

4. If possible, factor the quadratic.

5. Write the polynomial as the product of factors.

Example 2 Using the Factor Theorem to Solve a Polynomial Equation

Show that (x + 2) is a factor of x3 − 6x2 − x + 30. Find the remaining factors. Use the factors to determine the zeros 

of the polynomial.
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Solution We can use synthetic division to show that (x + 2) is a factor of the polynomial.

−2 1 −6 −1  30

−2 16 −30

1 −8 15  0

�e remainder is zero, so (x + 2) is a factor of the polynomial. We can use the Division Algorithm to write the 

polynomial as the product of the divisor and the quotient:

(x + 2)(x2 − 8x + 15)

We can factor the quadratic factor to write the polynomial as

(x + 2)(x − 3)(x − 5)

By the Factor �eorem, the zeros of x3 − 6x2 − x + 30 are −2, 3, and 5.

Try It #2
Use the Factor �eorem to !nd the zeros of f (x) = x3 + 4x2 − 4x − 16 given that (x − 2) is a factor of the polynomial.

Using the Rational Zero Theorem to Find Rational Zeros

Another use for the Remainder �eorem is to test whether a rational number is a zero for a given polynomial. But 

!rst we need a pool of rational numbers to test. �e Rational Zero �eorem helps us to narrow down the number of 

possible rational zeros using the ratio of the factors of the constant term and factors of the leading coe#cient of the 

polynomial. 

Consider a quadratic function with two zeros, x =   
2

 __ 
5

   and x =   
3

 __ 
4

  . By the Factor �eorem, these zeros have factors 

associated with them. Let us set each factor equal to 0, and then construct the original quadratic function absent its 

stretching factor.

 x −   
2

 __ 
5

   = 0 or x −   
3

 __ 
4

   = 0 Set each factor equal to 0.

 5x − 2 = 0 or 4x − 3 = 0  Multiply both sides of the equation to eliminate fractions.

 f (x) = (5x − 2)(4x − 3)  Create the quadratic function, multiplying the factors.

 f (x) = 20x2 − 23x + 6 Expand the polynomial. 

 f (x) = (5 ċ 4)x2 − 23x + (2 ċ 3)

Notice that two of the factors of the constant term, 6, are the two numerators from the original rational roots: 2 

and 3. Similarly, two of the factors from the leading coe#cient, 20, are the two denominators from the original 

rational roots: 5 and 4.

We can infer that the numerators of the rational roots will always be factors of the constant term and the denominators 

will be factors of the leading coe#cient. �is is the essence of the Rational Zero �eorem; it is a means to give us a 

pool of possible rational zeros.

the Rational Zero �eorem 

�e Rational Zero �eorem states that, if the polynomial f (x) = a
n
xn + a

n − 1
 xn − 1 + ... + a

1
 x + a

0
 has integer 

coe#cients, then every rational zero of f (x) has the form   
p

 _ q   where p is a factor of the constant term a
0
 and q is a 

factor of the leading coe#cient a
n
.

When the leading coe#cient is 1, the possible rational zeros are the factors of the constant term.

Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.49



SECTION 5.5 ZEROS OF POLYNOMIAL FUNCTIONS 405

How To…
Given a polynomial function f (x), use the Rational Zero �eorem to !nd rational zeros.

1. Determine all factors of the constant term and all factors of the leading coe#cient.

2. Determine all possible values of   
p

 _ q  , where p is a factor of the constant term and q is a factor of the leading coe#cient. 

Be sure to include both positive and negative candidates.

3. Determine which possible zeros are actual zeros by evaluating each case of f  (   
p

 _ q   ) .

Example 3 Listing All Possible Rational Zeros

List all possible rational zeros of f (x) = 2x4 − 5x3 + x2 − 4.

Solution �e only possible rational zeros of f (x) are the quotients of the factors of the last term, −4, and the factors 

of the leading coe#cient, 2.

�e constant term is −4; the factors of −4 are p = ±1, ±2, ±4.

�e leading coe#cient is 2; the factors of 2 are q = ±1, ±2.

If any of the four real zeros are rational zeros, then they will be of one of the following factors of −4 divided by one 

of the factors of 2.

   
p

 _ q   = ±  
1

 __ 
1

  , ±  
1

 __ 
2

     
p

 _ q   = ±  
2

 __ 
1

  , ±  
2

 __ 
2

     
p

 _ q   = ±  
4

 __ 
1

  , ±  
4

 __ 
2

  

Note that   
2

 __ 
2

   = 1 and   
4

 __ 
2

   = 2, which have already been listed. So we can shorten our list.

   
p

 _ q   =   
Factors of the last

  __  
Factors of the !rst

   = ±1, ±2, ±4, ± #
1

 __ 
2

  

Example 4 Using the Rational Zero Theorem to Find Rational Zeros

Use the Rational Zero �eorem to !nd the rational zeros of f (x) = 2x3 + x2 − 4x + 1.

Solution  �e Rational Zero �eorem tells us that if   
p

 _ q   is a zero of f (x), then p is a factor of 1 and q is a factor of 2.

   
p

 _ q   =   
factor of constant term

  ___   
factor of leading coe#cient

  

 =   
factor of 1

 _ 
factor of 2

  

�e factors of 1 are ±1 and the factors of 2 are ±1 and ±2. �e possible values for   
p

 _ q   are ±1 and ± #1 _ 
2
  . �ese are the 

possible rational zeros for the function. We can determine which of the possible zeros are actual zeros by substituting 

these values for x in f (x).

 f (−1) = 2(−1)3 + (−1)2 − 4(−1) + 1 = 4

 f (1) = 2(1)3 + (1)2 − 4(1) + 1 = 0

 f   ( − #
1

 __ 
2

   )  = 2  ( − #
1

 __ 
2

   ) 
3

 +  ( − #
1

 __ 
2

   ) 
2

 − 4  ( − #
1

 __ 
2

   )  + 1 = 3

 f   (   1 __ 
2

   )  = 2  (   1 __ 
2

   ) 
3

 +  (   1 __ 
2

   ) 
2

 − 4  (   1 __ 
2

   )  + 1 = − #1 _ 
2

  

Of those, −1, − #1 __ 
2

  , and  #
1 __ 
2

   are not zeros of f (x). 1 is the only rational zero of f (x).

Try It #3
Use the Rational Zero �eorem to !nd the rational zeros of f (x) = x3 − 5x2 + 2x + 1.
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Finding the Zeros of Polynomial Functions

�e Rational Zero �eorem helps us to narrow down the list of possible rational zeros for a polynomial function. Once 

we have done this, we can use synthetic division repeatedly to determine all of the zeros of a polynomial function.

How To…
Given a polynomial function f, use synthetic division to !nd its zeros.

1. Use the Rational Zero �eorem to list all possible rational zeros of the function.

2. Use synthetic division to evaluate a given possible zero by synthetically dividing the candidate into the polynomial. 

If the remainder is 0, the candidate is a zero. If the remainder is not zero, discard the candidate.

3. Repeat step two using the quotient found with synthetic division. If possible, continue until the quotient is a 

quadratic.

4. Find the zeros of the quadratic function. Two possible methods for solving quadratics are factoring and using the 

quadratic formula.

Example 5  Finding the Zeros of a Polynomial Function with Repeated Real Zeros

Find the zeros of f (x) = 4x3 − 3x − 1.

Solution �e Rational Zero �eorem tells us that if   
p

 _ q   is a zero of f (x), then p is a factor of −1 and q is a factor of 4.

   
p

 _ q   =   
factor of constant term

  ___
   

factor of leading coe#cient
  

 =   
factor of −1

 __
 

factor of 4
  

�e factors of −1 are ±1 and the factors of 4 are ±1, ±2, and ±4. �e possible values for   
p

 _ q   are ±1, ± #
1

 __ 
2

  , and ± #
1

 __ 
4

  . �ese 

are the possible rational zeros for the function. We will use synthetic division to evaluate each possible zero until we 

!nd one that gives a remainder of 0. Let’s begin with 1.

1 4 0 −3 −1

4 4 1

4 4 1 0

Dividing by (x − 1) gives a remainder of 0, so 1 is a zero of the function. �e polynomial can be written as

(x − 1)(4x2 + 4x + 1).

�e quadratic is a perfect square. f (x) can be written as

(x − 1)(2x + 1)2.

We already know that 1 is a zero. �e other zero will have a multiplicity of 2 because the factor is squared. To !nd the 

other zero, we can set the factor equal to 0.
 2x + 1 = 0

 x = − #
1

 __ 
2

  

�e zeros of the function are 1 and − #
1

 __ 
2

   with multiplicity 2.

Analysis Look at the graph of the function f in Figure 1. Notice, at x = −0.5, the graph bounces o! the x-axis, indicating 

the even multiplicity (2, 4, 6…) for the zero −0.5. At x = 1, the graph crosses the x-axis, indicating the odd multiplicity  

(1, 3, 5…) for the zero x = 1.

x

y

–0.5–1–1.5–2–2.5
–0.5

–1

–1.5

–2

–2.5

1.510.5

0.5

1

1.5

2 2.5

Cross

Bounce

Figure 1
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Using the Fundamental Theorem of Algebra
Now that we can !nd rational zeros for a polynomial function, we will look at a theorem that discusses the number 

of complex zeros of a polynomial function. �e Fundamental �eorem of Algebra tells us that every polynomial 

function has at least one complex zero. �is theorem forms the foundation for solving polynomial equations.

Suppose f is a polynomial function of degree four, and f (x) = 0. �e Fundamental �eorem of Algebra states that 

there is at least one complex solution, call it c
1
. By the Factor �eorem, we can write f (x) as a product of x − c

1
 and 

a polynomial quotient. Since x − c
1
 is linear, the polynomial quotient will be of degree three. Now we apply the 

Fundamental �eorem of Algebra to the third-degree polynomial quotient. It will have at least one complex zero, call 

it c
2
. So we can write the polynomial quotient as a product of x − c

2
 and a new polynomial quotient of degree two. 

Continue to apply the Fundamental �eorem of Algebra until all of the zeros are found. �ere will be four of them 

and each one will yield a factor of f (x).

the Fundamental �eorem of Algebra 
�e Fundamental �eorem of Algebra states that, if f (x) is a polynomial of degree n > 0, then f (x) has at least one 

complex zero.

We can use this theorem to argue that, if f (x) is a polynomial of degree n > 0, and a is a non-zero real number, 

then f (x) has exactly n linear factors

f (x) = a(x − c
1
)(x − c

2
)...(x − c

n
)

where c
1
, c

2
, ..., c

n
 are complex numbers. �erefore, f (x) has n roots if we allow for multiplicities.

Q & A…
Does every polynomial have at least one imaginary zero?

No. Real numbers are a subset of complex numbers, but not the other way around. A complex number is not necessarily 

imaginary. Real numbers are also complex numbers.

Example 6 Finding the Zeros of a Polynomial Function with Complex Zeros

Find the zeros of f (x) = 3x3 + 9x2 + x + 3.

Solution �e Rational Zero �eorem tells us that if   
p

 _ q   is a zero of f (x), then p is a factor of 3 and q is a factor of 3.

   
p

 _ q   =   
factor of constant term

  ___   
factor of leading coe#cient

  

 =   
factor of 3

 _ 
factor of 3

  

�e factors of 3 are ±1 and ±3. �e possible values for   
p

 _ q  , and therefore the possible rational zeros for the function, are 

±3, ±1, and ± #
1

 __ 
3

  . We will use synthetic division to evaluate each possible zero until we !nd one that gives a remainder 

of 0. Let’s begin with −3.

−3 3   9 1   3

−9 0 −3

3   0 1   0

Dividing by (x + 3) gives a remainder of 0, so −3 is a zero of the function. �e polynomial can be written as

(x + 3)(3x2 + 1)

We can then set the quadratic equal to 0 and solve to !nd the other zeros of the function.

 3x2 + 1 = 0

 x2 = − #1 __ 
3

  

 x = ± √ 
____

 − #
1

 __ 
3

     = ±  
i √

—

 3  
 _ 

3
  

�e zeros of f (x) are −3 and ± #
i √

—

 3  
 _ 

3
  .
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Analysi s Look at the graph of the function f in Figure 2. Notice that, at x = −3, the graph crosses the x-axis, indicating an 

odd multiplicity (1) for the zero x = −3. Also note the presence of the two turning points. #is means that, since there is a 

3rd degree polynomial, we are looking at the maximum number of turning points. So, the end behavior of increasing without 

bound to the right and decreasing without bound to the le$ will continue. #us, all the x-intercepts for the function are shown. 

So either the multiplicity of x = −3 is 1 and there are two complex solutions, which is what we found, or the multiplicity at  

x = −3 is three. Either way, our result is correct.

x

y

–2–4–6

–6

–12

–18

2

6

12

18

4 6

Cross

Figure 2

Try It #4
Find the zeros of f (x) = 2x3 + 5x2 − 11x + 4.

Using the Linear Factorization Theorem to Find Polynomials with Given Zeros

A vital implication of the Fundamental �eorem of Algebra, as we stated above, is that a polynomial function of degree 

n will have n zeros in the set of complex numbers, if we allow for multiplicities. �is means that we can factor the 

polynomial function into n factors. �e Linear Factorization �eorem tells us that a polynomial function will have 

the same number of factors as its degree, and that each factor will be in the form (x − c), where c is a complex number.

Let f be a polynomial function with real coe#cients, and suppose a + bi, b ≠ 0, is a zero of f (x). �en, by the Factor 

�eorem, x − (a + bi) is a factor of f (x). For f to have real coe#cients, x − (a − bi) must also be a factor of f (x). �is is 

true because any factor other than x − (a − bi), when multiplied by x − (a + bi), will leave imaginary components in 

the product. Only multiplication with conjugate pairs will eliminate the imaginary parts and result in real coe#cients. 

In other words, if a polynomial function f with real coe#cients has a complex zero a + bi, then the complex conjugate 

a − bi must also be a zero of f (x). �is is called the Complex Conjugate �eorem.

complex conjugate theorem 

According to the Linear Factorization �eorem, a polynomial function will have the same number of factors as 

its degree, and each factor will be in the form (x − c), where c is a complex number.

If the polynomial function f has real coe#cients and a complex zero in the form a + bi, then the complex 

conjugate of the zero, a − bi, is also a zero.

How To…
Given the zeros of a polynomial function f and a point (c, f (c)) on the graph of f, use the Linear Factorization �eorem 

to !nd the polynomial function.

1. Use the zeros to construct the linear factors of the polynomial.

2. Multiply the linear factors to expand the polynomial.

3. Substitute (c, f (c)) into the function to determine the leading coe#cient.

4. Simplify.
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Example 7  Using the Linear Factorization Theorem to Find a Polynomial with Given Zeros

Find a fourth degree polynomial with real coe#cients that has zeros of −3, 2, i, such that f (−2) = 100.

Solution Because x = i is a zero, by the Complex Conjugate �eorem x = −i is also a zero. �e polynomial must 

have factors of (x + 3), (x − 2), (x − i), and (x + i). Since we are looking for a degree 4 polynomial, and now have four 

zeros, we have all four factors. Let’s begin by multiplying these factors.

 f (x) = a(x + 3)(x − 2)(x − i)(x + i)

 f (x) = a(x2 + x − 6)(x2 + 1)

 f (x) = a(x4 + x3 − 5x2 + x − 6)

We need to !nd a to ensure f (−2) = 100. Substitute x = −2 and f (2) = 100 into f (x).

 100 = a((−2)4 + (−2)3 − 5(−2)2 + (−2) − 6)

 100 = a(−20)

 −5 = a

So the polynomial function is

 f (x) = −5(x4 + x3 − 5x2 + x − 6)

or

 f (x) = −5x4 − 5x3 + 25x2 − 5x + 30

Analysis We found that both i and −i were zeros, but only one of these zeros needed to be given. If i is a zero of a 

polynomial with real coe%cients, then −i must also be a zero of the polynomial because −i is the complex conjugate of i.

Q & A…
If 2 + 3i were given as a zero of a polynomial with real coe!cients, would 2 − 3i also need to be a zero?

Yes. When any complex number with an imaginary component is given as a zero of a polynomial with real coe#cients, 

the conjugate must also be a zero of the polynomial.

Try It #5
Find a third degree polynomial with real coe#cients that has zeros of 5 and −2i such that f (1) = 10.

Using Descartes’ Rule of Signs

�ere is a straightforward way to determine the possible numbers of positive and negative real zeros for any polynomial 

function. If the polynomial is written in descending order, Descartes’ Rule of Signs tells us of a relationship between 

the number of sign changes in f (x) and the number of positive real zeros. For example, the polynomial function below 

has one sign change.

 f (x) = x 4 + x 3 + x 2 + x − 1

�is tells us that the function must have 1 positive real zero.

�ere is a similar relationship between the number of sign changes in f (−x) and the number of negative real zeros.

 f (−x) = (−x)4 + (−x)3 + (−x)2 + (−x) − 1

 f (−x) =+x 4 −#x 3 + x 2 −#x − 1

In this case, f (−x) has 3 sign changes. �is tells us that f (x) could have 3 or 1 negative real zeros.
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Descartes’ Rule of Signs 

According to Descartes’ Rule of Signs, if we let f (x) = a
n
xn + a

n − 1
 xn − 1 + ... + a

1
 x + a

0
 be a polynomial function 

with real coe#cients:

• �e number of positive real zeros is either equal to the number of sign changes of f (x) or is less than the number 

of sign changes by an even integer.

• �e number of negative real zeros is either equal to the number of sign changes of f (−x) or is less than the 

number of sign changes by an even integer.

Example 8 Using Descartes’ Rule of Signs

Use Descartes’ Rule of Signs to determine the possible numbers of positive and negative real zeros for  

f (x) = −x4 − 3x3 + 6x2 − 4x − 12.

Solution Begin by determining the number of sign changes.

 f (x) = −x 4 − 3x 3 + 6x 2 − 4x − 12

Figure 3

�ere are two sign changes, so there are either 2 or 0 positive real roots. Next, we examine f (−x) to determine the 

number of negative real roots.
 f (−x) = −(−x)4 − 3(−x)3 + 6(−x)2 − 4(−x) − 12

 f (−x) = −x 4 + 3x 3 + 6x 2 + 4x − 12

 f (−x) = −x 4 +#3x 3 + 6x 2 + 4x − 12

Figure 4

Again, there are two sign changes, so there are either 2 or 0 negative real roots.

�ere are four possibilities, as we can see in Table 1.

Positive Real Zeros  Negative Real Zeros Complex Zeros Total Zeros

2 2 0 4

2 0 2 4

0 2 2 4

0 0 4 4

Table 1

Analysis We can confirm the numbers of positive and 

negative real roots by examining a graph of the function. See  

Figure 5. We can see from the graph that the function has 0 

positive real roots and 2 negative real roots.
x = −1

x

y

–1–2–3–4–5
–10

–20

–30

0 321

10

20

30

40

50

60

4 5

f (x) = − x4  − 3x3 + 6x2  − 4x − 12
x = −4.42

Figure 5  

Try It #6
Use Descartes’ Rule of Signs to determine the maximum possible numbers of positive and negative real zeros for  

f (x) = 2x4 − 10x3 + 11x2 − 15x + 12. Use a graph to verify the numbers of positive and negative real zeros for the 

function.

Solving Real-World Applications

We have now introduced a variety of tools for solving polynomial equations. Let’s use these tools to solve the bakery 

problem from the beginning of the section.
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Example 9 Solving Polynomial Equations

A new bakery o�ers decorated sheet cakes for children’s birthday parties and other special occasions. �e bakery wants 

the volume of a small cake to be 351 cubic inches. �e cake is in the shape of a rectangular solid. �ey want the length 

of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. 

What should the dimensions of the cake pan be?

Solution Begin by writing an equation for the volume of the cake. �e volume of a rectangular solid is given by V = lwh. 

We were given that the length must be four inches longer than the width, so we can express the length of the cake as l = w + 4.  

We were given that the height of the cake is one-third of the width, so we can express the height of the cake as  

h =  #
1

 __ 
3

  w. Let’s write the volume of the cake in terms of width of the cake.

 V = (w + 4)(w) (   1 __ 
3

  w ) 

 V =   
1

 __ 
3

  w 3 +   
4

 __ 
3

  w 2

Substitute the given volume into this equation.

 351 =   
1

 __ 
3

  w 3 +   
4

 __ 
3

  w 2 Substitute 351 for V.

 1053 = w 3 + 4w 2 Multiply both sides by 3.

 0 = w 3 + 4w 2 − 1053 Subtract 1053 from both sides.

Descartes’ rule of signs tells us there is one positive solution. �e Rational Zero �eorem tells us that the possible rational 

zeros are ±3, ±9, ±13, ±27, ±39, ±81, ±117, ±351, and ±1053. We can use synthetic division to test these possible 

zeros. Only positive numbers make sense as dimensions for a cake, so we need not test any negative values. Let’s begin 

by testing values that make the most sense as dimensions for a small sheet cake. Use synthetic division to check x = 1.

1 1 4 0 −1053
1 5    5

1 5 5 −1048

Since 1 is not a solution, we will check x = 3.

3 1 4  0 −1053
3 21   63

1 7 21 −990

Since 3 is not a solution either, we will test x = 9.

9 1  4  0 −1053
 9 117  1053

1 13 117     0

Synthetic division gives a remainder of 0, so 9 is a solution to the equation. We can use the relationships between the 

width and the other dimensions to determine the length and height of the sheet cake pan.

l = w + 4 = 9 + 4 = 13 and h =# #
1

 __ 
3

  w =   
1

 __ 
3

  (9) = 3

�e sheet cake pan should have dimensions 13 inches by 9 inches by 3 inches.

Try It #7
A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters. �e client tells the 

manufacturer that, because of the contents, the length of the container must be one meter longer than the width, and 

the height must be one meter greater than twice the width. What should the dimensions of the container be?

Access these online resources for additional instruction and practice with zeros of polynomial functions.

• Real Zeros, Factors, and Graphs of Polynomial Functions (http://openstaxcollege.org/l/realzeros)

• Complex Factorization Theorem (http://openstaxcollege.org/l/factortheorem)

• Find the Zeros of a Polynomial Function (http://openstaxcollege.org/l/findthezeros)

• Find the Zeros of a Polynomial Function 2 (http://openstaxcollege.org/l/findthezeros2)

• Find the Zeros of a Polynomial Function 3 (http://openstaxcollege.org/l/findthezeros3)

Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.49



412 CHAPTER 5 POLYNOMIAL AND RATIONAL FUNCTIONS

5.5 SECTION EXERCISES

VERBAL

1. Describe a use for the Remainder �eorem. 2. Explain why the Rational Zero �eorem does not 

guarantee !nding zeros of a polynomial function.

3. What is the di�erence between rational and real 

zeros?

4. If Descartes’ Rule of Signs reveals a no change 

of signs or one sign of changes, what speci!c 

conclusion can be drawn?

5. If synthetic division reveals a zero, why should we 

try that value again as a possible solution?

ALGEBRAIC

For the following exercises, use the Remainder �eorem to !nd the remainder.

6. (x4 − 9x2 + 14) ÷ (x − 2) 7. (3x3 − 2x2 + x − 4) ÷ (x + 3)

8. (x4 + 5x3 − 4x − 17) ÷ (x + 1) 9. (−3x2 + 6x + 24) ÷ (x − 4)

10. (5x5 − 4x4 + 3x3 − 2x2 + x − 1) ÷ (x + 6) 11. (x4 − 1) ÷ (x − 4)

12. (3x3 + 4x2 − 8x + 2) ÷ (x − 3) 13. (4x3 + 5x2 − 2x + 7) ÷ (x + 2)

For the following exercises, use the Factor �eorem to !nd all real zeros for the given polynomial function and one 

factor.

14. f (x) = 2x3 − 9x2 + 13x − 6; x − 1 15. f (x) = 2x3 + x2 − 5x + 2; x + 2

16. f (x) = 3x3 + x2 − 20x + 12; x + 3 17. f (x) = 2x3 + 3x2 + x + 6; x + 2

18. f (x) = −5x3 + 16x2 − 9; x − 3 19. x3 + 3x2 + 4x + 12; x + 3

20. 4x3 − 7x + 3; x − 1 21. 2x3 + 5x2 − 12x − 30, 2x + 5

For the following exercises, use the Rational Zero �eorem to !nd all real zeros.

22. x3 − 3x2 − 10x + 24 = 0 23. 2x3 + 7x2 − 10x − 24 = 0 24. x3 + 2x2 − 9x − 18 = 0

25. x3 + 5x2 − 16x − 80 = 0 26. x3 − 3x2 − 25x + 75 = 0 27. 2x3 − 3x2 − 32x − 15 = 0

28. 2x3 + x2 − 7x − 6 = 0 29. 2x3 − 3x2 − x + 1 = 0 30. 3x3 − x2 − 11x − 6 = 0

31. 2x3 − 5x2 + 9x − 9 = 0 32. 2x3 − 3x2 + 4x + 3 = 0 33. x4 − 2x3 − 7x2 + 8x + 12 = 0

34. x4 + 2x3 − 9x2 − 2x + 8 = 0 35. 4x4 + 4x3 − 25x2 − x + 6 = 0 36. 2x4 − 3x3 − 15x2 + 32x − 12 = 0

37. x4 + 2x3 − 4x2 − 10x − 5 = 0 38. 4x3 − 3x + 1 = 0 39. 8x4 + 26x3 + 39x2 + 26x + 6

For the following exercises, !nd all complex solutions (real and non-real).

40. x3 + x2 + x + 1 = 0 41. x3 − 8x2 + 25x − 26 = 0 42. x3 + 13x2 + 57x + 85 = 0

43. 3x3 − 4x2 + 11x + 10 = 0 44. x4 + 2x3 + 22x2 + 50x − 75 = 0 45. 2x3 − 3x2 + 32x + 17 = 0

GRAPHICAL

Use Descartes’ Rule to determine the possible number of positive and negative solutions. �en graph to con!rm which 

of those possibilities is the actual combination.

46. f (x) = x3 − 1 47. f (x) = x4 − x2 − 1 48. f (x) = x3 − 2x2 − 5x + 6

49. f (x) = x3 − 2x2 + x − 1 50. f (x) = x4 + 2x3 − 12x2 + 14x − 5 51. f (x) = 2x3 + 37x2 + 200x + 300
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52. f (x) = x3 − 2x2 − 16x + 32 53. f (x) = 2x4 − 5x3 − 5x2 + 5x + 3 54. f (x) = 2x4 − 5x3 − 14x2 + 20x + 8

55. f (x) = 10x4 − 21x2 + 11

NUMERIC

For the following exercises, list all possible rational zeros for the functions.

56. f (x) = x4 + 3x3 − 4x + 4 57. f (x) = 2x3 + 3x2 − 8x + 5 58. f (x) = 3x3 + 5x2 − 5x + 4

59. f (x) = 6x4 − 10x2 + 13x + 1 60. f (x) = 4x5 − 10x4 + 8x3 + x2 − 8

TECHNOLOGY

For the following exercises, use your calculator to graph the polynomial function. Based on the graph, !nd the rational 

zeros. All real solutions are rational.

61. f (x) = 6x3 − 7x2 + 1 62. f (x) = 4x3 − 4x2 − 13x − 5

63. f (x) = 8x3 − 6x2 − 23x + 6 64. f (x) = 12x4 + 55x3 + 12x2 − 117x + 54

65. f (x) = 16x4 − 24x3 + x2 − 15x + 25

EXTENSIONS

For the following exercises, construct a polynomial function of least degree possible using the given information.

66. Real roots: −1, 1, 3 and (2, f (2)) = (2, 4) 67. Real roots: −1, 1 (with multiplicity 2 and 1) and  

(2, f (2)) = (2, 4)

68. Real roots: −2,   
1

 __ 
2

   (with multiplicity 2) and  

(−3, f (−3)) = (−3, 5)

69. Real roots: − #
1

 __ 
2

  , 0,   
1

 __ 
2

   and (−2, f (−2)) = (−2, 6)

70. Real roots: −4, −1, 1, 4 and (−2, f (−2)) = (−2, 10)

REAL-WORLD APPLICATIONS

For the following exercises, !nd the dimensions of the box described.

71. �e length is twice as long as the width. �e height  

is 2 inches greater than the width. �e volume is  

192 cubic inches.

72. �e length, width, and height are consecutive whole 

numbers. �e volume is 120 cubic inches.

73. �e length is one inch more than the width, which is 

one inch more than the height. �e volume is  

86.625 cubic inches.

74. �e length is three times the height and the height is 

one inch less than the width. �e volume is  

108 cubic inches.

75. �e length is 3 inches more than the width. �e 

width is 2 inches more than the height. �e volume 

is 120 cubic inches.

For the following exercises, !nd the dimensions of the right circular cylinder described.

76. �e radius is 3 inches more than the height. �e 

volume is 16π cubic meters.

77. �e height is one less than one half the radius.  

�e volume is 72π cubic meters.

78. �e radius and height di�er by one meter. �e  

radius is larger and the volume is 48π cubic meters.

79. �e radius and height di�er by two meters.  

�e height is greater and the volume is 28.125π 

cubic meters.

80. �e radius is   
1

 __ 
3

   meter greater than the height. �e 

volume is   
98

 ___ 
9π

  π cubic meters.
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