GUIDED NOTES - 2.5 QUADRATIC EQUATIONS

Learning ObJectives

In this section, you will:

- Solve quadratic equations by factoring.
- Solve quadratic equations by the square root property.
- Solve quadratic equations by completing the square.
- Solve quadratic equations by using the quadratic formula.

Solving Quadratic Equations by Factoring

- Give an example of a quadratic equation below.

Study the box in your textbook section titled "the zero-product property and quadratic equations."

- Solving by factoring depends on the zero-product property that states if $a \cdot b=0$, then \qquad .
- Write the standard form of a quadratic equation below.
- Write out the 3 step process for factoring a quadratic equation with a leading coefficient of 1 . 1.

2.
3.

Try It: Read Example 1 in the text, then answer the following.
Factor and solve the quadratic equation: $x^{2}-5 x-6=0$.

Try It: Read Example 2 in the text, then answer the following.
Factor and solve the quadratic equation: $x^{2}-4 x-21=0$.

Try It: Read Example 3 in the text, then answer the following.
Factor and solve the quadratic equation: $x^{2}-25=0$.

- Write out the 6 step process for factoring and solving a quadratic equation of higher order. 1.

2.
3.
4.
5.
6.

Try It: Read Example 4 in the text, then answer the following.
Solve using factoring by grouping: $12 x^{2}+11 x+2=0$.

Try It: Read Example 5 in the text, then answer the following.
Solve by factoring: $x^{3}+11 x^{2}+10 x=0$.

Using SQUARE Root Property

Study the box in your textbook section titled "the square root property."

- When x^{2} is isolated, the square root property states that if $x^{2}=k$, then \qquad .
- Write out the 3 step process for using the square root property to solve a quadratic with an x^{2} term but no x term.

1.
2.
3.

Try It: Read Examples 6 and 7 in the text, then answer the following.
Solve the quadratic equation using the square root property: $(x-5)^{2}=12$.

COMPLETING THE SQUARE

- Not all quadratic equations can be factored or can be solved in their original form using the square root property. In these cases, we use a method called \qquad .
- Write out the 5 step process for solving a quadratic equation using completing the square.
* Note: To complete the square, the leading coefficient, a, must equal \qquad . If it does not, then divide he entire equation by \qquad .

1.
2.
3.
4.
5.

Try It: Read Example 8 in the text, then answer the following.
Solve by completing the square: $x^{2}-6 x=13$.

Using the Quadratic Formula

- The quadratic formula is a formula that will solve \qquad quadratic equations, but be careful when substituting values and use parenthesis when inserting a negative number.

Study the box in your textbook section titled "the quadratic formula."

- Write the quadratic formula below:
- Write out the 4 step process for solving a quadratic equation using the quadratic formula.

1.
2.
3.
4.

Try It: Read Examples 9 and 10 in the text, then answer the following.
Solve the quadratic equation using the quadratic formula: $9 x^{2}+3 x-2=0$.

The DISCRIMINANT

- When we use the quadratic formula, it not only generates the solutions to a quadratic equation, it also tells us about the nature of the solutions. The expression under the radical, \qquad , is known as the discriminant. Please list the two things that the discriminant can tell us:
- Please fill out the table below.

Value of the Discriminant	Results
$b^{2}-4 a c=0$	
	Two rational solutions
	Two irrational solution
$b^{2}-4 a c<0$	

Try It: Read Examples 9, 10, and 11 in the text, then answer the following.

Use $6 x^{2}-x-2=0$ for the following questions.
a. Use the discriminant to state the expected type of solutions.
b. Use the quadratic formula to solve the quadratic equation.

