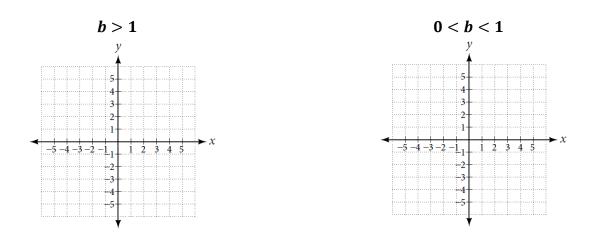
GUIDED NOTES – 6.2 GRAPHS OF EXPONENTIAL FUNCTIONS

LEARNING OBJECTIVES

In this section, you will:

- Graph exponential functions.
- Graph exponential functions using transformations.

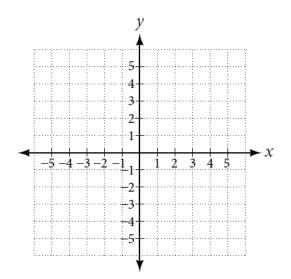
GRAPHING EXPONENTIAL FUNCTIONS


Study the box in your textbook section titled "characteristics of the graph of the parent function $f(x) = b^x$."

- An exponential function with the form $f(x) = b^x$, b > 0, $b \neq 1$, has these characteristics:
 - _____ function

• *x*-intercept:

- Horizontal asymptote: ______
- Domain:
- Range: ______


- y-intercept:
- Increasing if b 1
- Decreasing if b 1
- Sketch the exponential function in the form $f(x) = b^x$, when

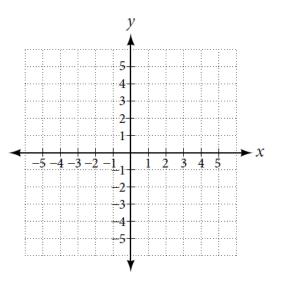
- Write out the 4 step process for graphing the function, given an exponential function in the form $f(x) = b^x$.
 - 1.
 - 2.
 - Ζ.
 - 3.

Try It: Read Example 1 in the text, then answer the following.

Sketch the graph $f(x) = 4^x$. State the domain, range, and asymptote.

GRAPHING TRANSFORMATIONS OF EXPONENTIAL FUNCTIONS

Study the box in your textbook section titled "shifts of the parent function $f(x) = b^x$ ".

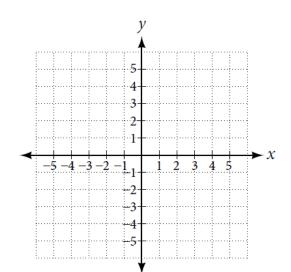

- For any constants c and d, the function $f(x) = b^{x+c} + d$ shifts the parent function $f(x) = b^x$
 - Vertically _____ units, in the _____ direction of the sign of _____
 - Horizontally _____ units, in the ______ direction of the sign of ______
 - The *y*-intercept becomes (0, _____)
 - The horizontal asymptote becomes y = _____
 - The range becomes ______
 - The domain remains ______
- Write out the 4 step process for graphing the translation, given an exponential function in the form $f(x) = b^{x+c} + d$.
 - 1.

3.

4.

Try It: Read Example 2 in the text, then answer the following.

Graph $f(x) = 2^{x-1} + 3$. State the domain, range, and asymptote.

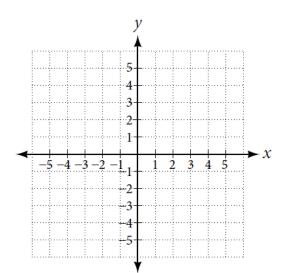


Study the box in your textbook section titled "stretches and compressions of the parent function $f(x) = b^x$ ".

- For any factor a > 0, the function $f(x) = a(b)^x$
 - Is ______ vertically by a factor of a if |a| > 1
 - Is ______ vertically by a factor of a if |a| < 1
 - The *y*-intercept becomes (0, _____)
 - The horizontal asymptote is *y* = _____
 - The range is ______
 - The domain is ______

Try It: Read Example 4 in the text, then answer the following.

Sketch the graph $f(x) = \frac{1}{2}(4)^x$. State the domain, range, and asymptote.



Study the box in your textbook section titled "reflections of the parent function $f(x) = b^x$."

- The function $f(x) = -b^x$
 - Reflects the parent function $f(x) = b^x$ about the -axis
 - The *y*-intercept becomes (0, _____)
 - The horizontal asymptote is y = _____
 - The range is
 - The domain is ______
 - The function $f(x) = b^{-x}$
 - Reflects the parent function $f(x) = b^x$ about the -axis
 - The *y*-intercept becomes (0, _____)
 - The horizontal asymptote is y = _____
 - The range is ______
 - The domain is ______

Try It: Read Example 5 in the text, then answer the following.

Find and graph the equation for a function, g(x), that reflects $f(x) = 1.25^x$ about the y-axis. State its domain, range, and asymptote.

Study your textbook section to fill in the following table.

Translations of the Parent Function $f(x) = b^x$	
Translation	Form
Shift	<i>f</i> (<i>x</i>) =
Stretch and Compress	<i>f</i> (<i>x</i>) =
Reflect about the <i>x</i> -axis	<i>f</i> (<i>x</i>) =
Reflect about the <i>y</i> -axis	<i>f</i> (<i>x</i>) =
General equation for all translations	<i>f</i> (<i>x</i>) =

Study the box in your textbook section titled "translations of exponential functions."

• A translation of an exponential functions has the form

f(x) =_____, where the parent function $f(x) = b^x$, b > 1 is

- Shifted horizontally _____ units to the _____
- _____ vertically by a factor of |a| if |a| > 1
- _____ vertically by a factor of |a| if 0 < |a| < 1
- Shifted vertically _____ units
- Reflected about the *x*-axis when a _____0

* Note the order of the shifts, transformations, and reflections follow the order of operations.

Try It: Read Example 6 in the text, then answer the following.

Write the equation for the function described below. Give the horizontal asymptote, the domain, and the range.

 $f(x) = e^x$ is compressed vertically by a factor of $\frac{1}{3}$, reflected across the x-axis and then shifted down 2 units.