MAT 1073 - MODULE 1 PRE-CLASS WORK

Guided Notes – 1.1 Functions and Function Notation

LEARNING OBJECTIVES

In this section, you will:

- Determine whether a relation represents a function.
- Find the value of a function.
- Determine whether a function is one-to-one.
- Use the vertical line test to identify functions.
- Graph the functions listed in the library of functions.

DETERMINING WHETHER A RELATION REPRESENTS A FUNCTION

Study the box in your textbook section titled "function."

• State the definition of a function below.

* Remember the input values make up the domain, and the output values make up the range.

Try It: Read Examples 1 and 2 in the text, then answer the following.

Table 2 lists the five greatest baseball players of all time in order of rank.

Player	Rank	
Babe Ruth	1	
Willie Mays	2	
Ty Cobb	3	
Walter Johnson	4	
Hank Aaron	5	
Table 2		

- **a.** Is the rank a function of the player name? Explain.
- **b.** Is the player name a function of the rank? Explain.

Study the box in your textbook section titled "function notation."

- The notation y = f(x) defines a function named f and is read as "y is a function of x". What do the letters x and y represent?
 - *x*:
 - *y*:

Try It: Read Example 5 in the text, then answer the following.

Does Table 9 represent a function?

Input	Output	
1	10	
2	100	
3	1000	

Table 9

FINDING INPUT AND OUTPUT VALUES OF A FUNCTION

Try It: Read Examples 6 and 7 in the text, then answer the following.

Given the function $g(m) = \sqrt{m-4}$. Evaluate g(5).

Try It: Read Example 8 in the text, then answer the following.

Given the function $g(m) = \sqrt{m-4}$, solve g(m) = 2. (*NOTE that you are here given an* output *value*.)

Homework: You should now be ready to attempt problems 14-15 in "Module 1 Homework" on WeBWorK.

Try It: Read Examples 9 and 10 in the text, then answer the following.

If $x - 8y^3 = 0$, express y as a function of x.

Try It: Read Example 11 in the text, then answer the following.

Using **Table 11**, evaluate g(1).

n	1	2	3	4	5
g(n)	8	6	7	6	8
Table 11					

Try It: Read Example 12 in the text, then answer the following.

Using **Figure 6**, solve f(x) = 1.

DETERMINING WHETHER A FUNCTION IS ONE-TO-ONE

Study the box in your textbook section titled "one-to-one function."

• Give the definition of a one-to-one function below.

USING THE VERTICAL LINE TEST

Try It: Read Example 14 in the text, then answer the following.

Does the graph in **Figure 13** represent a function? Explain.

Homework: You should now be ready to attempt problems 6-7 in "Module 1 Homework" on WeBWorK.

USING THE HORIZONTAL LINE TEST

• State below what the horizontal line test is used for.

Try It: Read Example 15 in the text, then answer the following.

Is the graph shown here one-to-one? Explain.

Homework: You should now be ready to attempt problem 8 in "Module 1 Homework" on WeBWorK.

REVIEW QUESTIONS

Answer the following questions in your own words.

1. What is the difference between the input and the output of a function?

2. Why does the vertical line test tell us whether the graph of a relation is a function?

IDENTIFYING BASIC TOOLKIT FUNCTIONS

• Give the function and its graph for each function named in the table below.

TOOLKIT FUNCTIONS			
Name	Function	Graph	
Constant		y -5- -5	x f(x)
Identity		y 5 4 3 2 -5 -4 -3 -2 -1 1 2 3 -2 -3 -3 -4 -5 -4 -4 -5 -4 -4 -5 -4 -4 -4 -5 -4 -4 -4 -4 -4 -4 -4 -4	x f(x)
Absolute Value		y 5 4 3	x f(x)
Quadratic		y	
Cubic		y 5 4 3 2 1 -5 -4 -5 -4 -5 -4 -5 -4 -5 -5	x f(x)

© UTSA Math Matters 2017

Reciprocal	y -5 -5 -5 -5 -5 -5 -5 -	
Reciprocal Squared	y 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 -5 -4 -3 -2 -1 1 2 3 4 5 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -2 -1 -1 -1 -2 -2 -1 -1 -2 -3 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -4 -5 -2 -1 -1 -1 -2 -3 -4 -5 -2 -2 -1 -1 -1 -2 -3 -4 -5 -2 -2 -2 -2 -2 -3 -3 -3 -2 -2 -4 -3 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -5 -2 -2 -2 -3 -4 -3 -4 -3 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -3	
Square Root	y 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 -5 -4 -3 -2 -1 1 2 3 4 -5 -4 -3 -2 -1 -1 -2 -1 -1 -2 -1 -1	$\begin{array}{c c} x & f(x) \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Cube Root	y 5 4 3 2 1 -5-4-3-2-1 1 2 -5-4-3-2-1 -2 -3 -4 -5-4-3-2-1 -1 -2 -5-4-3-2-1 -1 -2 -5-4-3-2-1 -2 -2 -5-4-3-2-1 -2 -2 -5-4-3-2-1 -2 -2 -5-4-3-2-1 -2 -2 -5-4-3-2-1 -2 -2 -3-4-3-2-1 -2 -3-4-3-2-1 -2 -3-4-3-2-1 -2 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -3-4-3-2-1 -5-4-3-1 -5-5-4-3-1 -5-5-4-3-1 -5-5-4-3-1 -5-5-4-3-1 -5-5-4-3-1 -5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	

GUIDED NOTES – 1.2 DOMAIN AND RANGE

LEARNING OBJECTIVES

In this section, you will:

- Find the domain of a function defined by an equation.
- Graph a piecewise-defined function.

FINDING THE DOMAIN OF A FUNCTION DEFINED BY AN EQUATION

- As a review, write the 4 conventions of interval notation as described in your textbook:
 - •
 - - •

 - •
 - -
 - Try It: Read Example 1 in the text, then answer the following.

Find the domain of the function: $\{(-5, 4), (0,0), (5, -4), (10, -8), (1, -12)\}$

Try It: Read Example 2 in the text, then answer the following.

Find the domain of the function: $f(x) = 5 - x + x^3$.

Try It: Read Example 3 in the text, then answer the following.

Find the domain of the function $f(x) = \frac{1+4x}{2x-1}$.

Try It: Read Example 4 in the text, then answer the following.

Find the domain of the function $f(x) = \sqrt{5 + 2x}$.

FINDING DOMAIN AND RANGE FROM GRAPHS

Try It: Read Examples 6 and 7 in the text, then answer the following.

Given **Figure 12**, identify the domain and range using interval notation. (*Your answer will be approximate, based on a reading of the graph.*)

Homework: You should now be ready to attempt problem 22-26 in "Module 1 Homework" on WeBWorK.

© UTSA Math Matters 2017

REVIEW QUESTIONS

Answer the following questions in your own words.

3. Why does the domain differ for different functions?

4. Explain why the domain of $f(x) = \sqrt[3]{x}$ is different from the domain of $f(x) = \sqrt{x}$.

5. How do we determine the domain of a function defined by an equation?

FINDING DOMAINS AND RANGES OF THE TOOLKIT FUNCTIONS

Study the table in your textbook section under "Finding Domains and Ranges of the Toolkit Functions".

• Fill in the domains and ranges of the toolkit functions, using interval notation.

TOOLKIT FUNCTIONS			
Name	Domain	Range	
Constant			
Identity			
Absolute Value			
Quadratic			
Cubic			
Reciprocal			
Reciprocal Squared			
Square Root			
Cube Root			